Cho \(0^\circ \le \beta \le 180^\circ \) thỏa mãn đẳng thức \[{\rm{cos}}\left( { - 5{\rm{7}}^\circ } \right) = \sin \left( \beta \right)\]. Giá trị của \(\beta \) thỏa mãn đẳng thức trên là
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là B
\[{\rm{cos}}\left( { - 5{\rm{7}}^\circ } \right) = {\rm{cos}}5{\rm{7}}^\circ = {\rm{cos}}\left( {90^\circ - 33^\circ } \right) = \sin 33^\circ \]
Vậy \(\beta = 33^\circ \).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Gọi \(x\) là số bàn và \(y\) là số ghế anh An đóng được trong một tuần \(\left( {x;y\,\, \ge 0} \right)\).
Số giờ đề đóng \(x\) chiếc bàn và \(y\) chiếc ghế là: \(6x + 3y\) (giờ).
Mỗi tuần anh làm việc không quá \(60\) giờ nên ta có bất phương trình: \(6x + 3y \le 60\) (1).
Vì số ghế nhiều hơn số bàn ít nhất \(2\) lần nên ta có: \(y \ge 2x\)(2)
Từ (1) và (2) ta có hệ bất phương trình:
\(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\6x + 3y \le 60\\y \ge 2x\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge 0\\y \ge 0\\2x + y \le 20\\ - 2x + y \ge 0\end{array} \right.\)
Miền nghiệm của hệ bất phương trình là miền trong của tam giác \(OAB\) với \(O\left( {0;\,\,0} \right),\,A\left( {5;\,\,10} \right),\,\,B\left( {0;20} \right)\).

Số tiền lãi thu được: \(F\left( {x;\,\,y} \right) = 150x + 100y\) (nghìn đồng).
Ta có:
Tại \(O\left( {0;\,\,0} \right)\) có \(F\left( {0;\,\,0} \right) = 150.0 + 100.0 = 0\);
Tại \(A\left( {5;\,\,10} \right)\) có \(F\left( {5;\,\,10} \right) = 150.5 + 100.10 = 1\,\,750\);
Tại \(B\left( {0;20} \right)\) có \(F\left( {0;\,\,20} \right) = 150.0 + 100.20 = 2\,\,000\).
Vậy một tuần anh An phải đóng được \(0\) chiếc bàn và \(20\)chiếc ghế để tiền lãi thu được là lớn nhất.
Lời giải
a)
b) Ta có hình vẽ:

Quãng đường di chuyển của tàu từ \(A\) đến vị trí \(B\) (động cơ tàu bị hỏng) sau \(1,5\) giờ với vận tốc \(60km/h\) là: \(60\,.\,1,5\, = \,90\,\,\left( {km} \right)\).
Quãng đường di chuyển của tàu từ \(B\) đến vị trí \(C\) (nơi neo đậu) sau \(3\) giờ với vận tốc \(6\,\,km/h\) là: \(6\,.\,3\, = \,18\,\,\left( {km} \right)\).
Ta có: \(\widehat {ABC} = 180^\circ - 60^\circ = 120^\circ \).
Xét tam giác \(ABC\), có:
\(A{C^2} = A{B^2} + B{C^2} - 2.AB.BC.{\rm{cos}}\widehat {ABC}\) (định lí cosin)
\( = {90^2} + {18^2} - 2.90.18.{\rm{cos120}}^\circ \)
\( = 10\,\,044\)
\( \Leftrightarrow AC = 18\sqrt {31} \approx 100\,\,\left( {km} \right)\).
Vậy khoảng cách từ cảng \(A\) tới đảo nơi tàu neo đậu là khoảng \(100\,\,km\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


