Câu hỏi:

15/11/2025 33 Lưu

Ta không thể vận dụng định lí sin, định lí côsin để giải một tam giác thường nếu biết những yếu tố nào sau đây ?

A. Số đo một góc và độ dài hai cạnh;                  
B. Độ dài ba cạnh;
C. Số đo hai góc và độ dài một cạnh;                  
D. Độ dài hai cạnh.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: D

Để giải một tam giác thường ta cần ít nhất ba yếu tố, trong đó có không quá 2 yếu tố về góc. Như vậy, ta không thể giải một tam giác thường nếu chỉ có độ dài hai cạnh.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Xét tam giác \(ABC\). Áp dụng định lí cosin cho tam giác \(ABC\) ta có:

\(A{B^2} = A{C^2} + B{C^2} - 2AC.BC.cosC\)

\( \Leftrightarrow A{B^2} = {200^2} + {180^2} - 2.200.180.cos{60^o}\)

\( \Leftrightarrow A{B^2} = 36400\)

\( \Leftrightarrow AB = 20\sqrt {91} \).

Vậy \(AB = 20\sqrt {91} \,\,\left( m \right)\).

Câu 2

A. \(79^\circ \);            
B. \(78^\circ \);                
C. \(77^\circ \);                                    
D. \(76^\circ \).

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Xét tam giác \(ABC\)

Áp dụng hệ quả của định lí côsin ta có:

\(\cos \widehat {ABC} = \frac{{A{B^2} + B{C^2} - A{C^2}}}{{2AB \cdot BC}} = \frac{{{5^2} + {6^2} - {7^2}}}{{2 \cdot 5 \cdot 6}} = \frac{1}{5}\).

Do đó, \(\widehat {ABC} \approx 78^\circ \).

Câu 3

A. \(\frac{a}{{\sin \alpha }} = \frac{b}{{\sin \beta }} = \frac{c}{{\sin \varphi }}\);                                  
B. \({a^2} = {b^2} + {c^2} - 2bc \cdot \cos \alpha \);
C. \({a^2} + {c^2} = {b^2} + 2ac \cdot \cos \beta \);         
D. \({a^2} = {b^2} - {c^2} + 2bc \cdot \cos \alpha \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. Giá của vectơ \(\overrightarrow {AM} \) là đường trung trực của đoạn thẳng \(AB\);
B. Điểm đầu của vectơ \(\overrightarrow {AM} \)\(M\);
C. Điểm cuối của vectơ \(\overrightarrow {BA} \)\(B\);
D. Giá của vectơ \(\overrightarrow {MB} \) là đường thẳng \(AB\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\left\{ \begin{array}{l}x - y > 4\\2x + y < 19\end{array} \right.\);                                                                
B. \(\left\{ \begin{array}{l}x - 2y \le 0\\2x + y < 19\end{array} \right.\);
C. \(\left\{ \begin{array}{l}{x^2} - y > 0\\x + y < 6\end{array} \right.\);                                                                
D. \(\left\{ \begin{array}{l}x - y - 3 > 4\\2x + y + 2 < 19\end{array} \right.\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP