Câu hỏi:

15/11/2025 28 Lưu

(1,0 điểm) Cho tập hợp \(A = \left( { - \infty ;m + 1} \right]\)\(B = \left( { - 2;\, + \infty } \right)\).

a) Xác định tập \(A \cap B\) với \(m = 2\).

b) Xác định \(m\) để \(A \cap B = \emptyset \).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Tập hợp \(A = \left( { - \infty ;\,m + 1} \right]\)\(B = \left( { - 2;\, + \infty } \right)\)

a) Với \(m = 2\) ta có \(A = \left( { - \infty ;\,3} \right]\)\(B = \left( { - 2;\, + \infty } \right)\)

Ta có:

(1,0 điểm) Cho tập hợp \(A = \ (ảnh 1)

Vậy tập \(A \cap B = \left( { - 2;\,3} \right]\).

b) Để \(A \cap B = \emptyset \) thì \(m + 1 \le - 2 \Leftrightarrow m \le - 3\)

Vậy \(m \le - 3\) thì \(A \cap B = \emptyset \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\frac{a}{{\sin \alpha }} = \frac{b}{{\sin \beta }} = \frac{c}{{\sin \varphi }}\);                                  
B. \({a^2} = {b^2} + {c^2} - 2bc \cdot \cos \alpha \);
C. \({a^2} + {c^2} = {b^2} + 2ac \cdot \cos \beta \);         
D. \({a^2} = {b^2} - {c^2} + 2bc \cdot \cos \alpha \).

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Áp dụng định lí côsin ta có: \({a^2} = {b^2} + {c^2} - 2bc \cdot \cos \alpha \).

Vậy khẳng định \({a^2} = {b^2} - {c^2} + 2bc \cdot \cos \alpha \) là sai.

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Xét tam giác \(ABC\). Áp dụng định lí cosin cho tam giác \(ABC\) ta có:

\(A{B^2} = A{C^2} + B{C^2} - 2AC.BC.cosC\)

\( \Leftrightarrow A{B^2} = {200^2} + {180^2} - 2.200.180.cos{60^o}\)

\( \Leftrightarrow A{B^2} = 36400\)

\( \Leftrightarrow AB = 20\sqrt {91} \).

Vậy \(AB = 20\sqrt {91} \,\,\left( m \right)\).

Câu 3

A. \(79^\circ \);            
B. \(78^\circ \);                
C. \(77^\circ \);                                    
D. \(76^\circ \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. Giá của vectơ \(\overrightarrow {AM} \) là đường trung trực của đoạn thẳng \(AB\);
B. Điểm đầu của vectơ \(\overrightarrow {AM} \)\(M\);
C. Điểm cuối của vectơ \(\overrightarrow {BA} \)\(B\);
D. Giá của vectơ \(\overrightarrow {MB} \) là đường thẳng \(AB\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\left\{ \begin{array}{l}x - y > 4\\2x + y < 19\end{array} \right.\);                                                                
B. \(\left\{ \begin{array}{l}x - 2y \le 0\\2x + y < 19\end{array} \right.\);
C. \(\left\{ \begin{array}{l}{x^2} - y > 0\\x + y < 6\end{array} \right.\);                                                                
D. \(\left\{ \begin{array}{l}x - y - 3 > 4\\2x + y + 2 < 19\end{array} \right.\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP