Câu hỏi:

17/11/2025 7 Lưu

Cho tam giác \(ABC\) cân tại \(C\) cạnh \(AC = 5\,\,{\rm{cm}}\), \(\widehat {ACB} = 45^\circ \). Tính \(\overrightarrow {CA} \cdot \overrightarrow {CB} = ?\) 

A. \(\frac{{25\sqrt 2 }}{2}\);                               
B. \( - \frac{{25\sqrt 2 }}{2}\);                                      
C. \(\frac{{5\sqrt 2 }}{2}\);                                      
D. \(25\sqrt 2 \).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Xét tam giác \(ABC\) cân tại \(C\) cạnh \(AC = 5\,\,{\rm{cm}}\), \(\widehat {ACB} = 45^\circ \).

Do đó,\(BC = AC = 5\,\,\,{\rm{cm}} \Rightarrow \left| {\overrightarrow {CB} } \right| = \left| {\overrightarrow {CA} } \right| = 5\,\,{\rm{cm}}\).

Ta có: \(\left( {\overrightarrow {CB} ,\overrightarrow {CA} } \right) = \widehat {ACB} = 45^\circ \Rightarrow \cos \left( {\overrightarrow {CB} ,\overrightarrow {CA} } \right) = \cos 45^\circ = \frac{{\sqrt 2 }}{2}\).

Vậy \(\overrightarrow {CA} \cdot \overrightarrow {CB} = \left| {\overrightarrow {CA} } \right| \cdot \left| {\overrightarrow {CB} } \right| \cdot \cos \left( {\overrightarrow {CA} ,\overrightarrow {CB} } \right) = 5 \cdot 5 \cdot \frac{{\sqrt 2 }}{2} = \frac{{25\sqrt 2 }}{2}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. Tồn tại một số nguyên \(x\) để \(x\) chia hết cho 5;
B. Mọi số nguyên \(x\) chia hết cho 5;
C. Tồn tại một số nguyên \(x\) để \(x\) không chia hết cho 5;
D. Mọi số nguyên \(x\) không chia hết cho 5.

Lời giải

Đáp án đúng là: A

Mệnh đề “\(\exists x \in \mathbb{Z},x\,\, \vdots \,\,5\)” được diễn tả bằng lời như sau:

Tồn tại một số nguyên \(x\) để \(x\) chia hết cho 5.

Câu 2

A. \(\left( {3;\,2} \right)\);                                   
B. \(\left( {1;\,\,11} \right)\);     
C. \(\left( { - 1; - 14} \right)\);                                           
D. \(\left( { - 2; - 20} \right)\).

Lời giải

Đáp án đúng là: B

Thay \(x = 1\)\(y = 11\) vào biểu thức \(10x - y\) ta có:

\(10 \cdot 1 - 11 = - 1 < 0\).

Vậy cặp số \(\left( {1;\,\,11} \right)\) không phải là một nghiệm của bất phương trình bậc nhất hai ẩn \(10x - y \ge 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. Tứ giác \(ABCD\) là hình thang cân vì tứ giác \(ABCD\)\(AC = BD\);
B. Nếu tứ giác \(ABCD\) là hình thang cân do đó tứ giác \(ABCD\)\(AC = BD\); ; 
C. Nếu tứ giác \(ABCD\) là hình thang cân thì tứ giác \(ABCD\)\(AC = BD\)
D. Tứ giác \(ABCD\)\(AC = BD\) khi và chỉ khi tứ giác \(ABCD\) là hình thang cân.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\left( { - 1;6} \right)\)                                   
B. \(\left( {45;69} \right)\);         
C. \(\left( {23;34} \right)\);                      
D. \(\left( {1;50} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP