Quảng cáo
Trả lời:
Đáp án đúng là: A
Hệ \(\left\{ \begin{array}{l}x - 2y > 15\\x - 3y < 3\end{array} \right.\) gồm các bất phương trình bậc nhất hai ẩn nên đây là hệ bất phương trình bậc nhất hai ẩn.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
![Cho tam giác \[ABC\] có trực tâm \(H\). (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/11/7-1763354073.png)
Do \(M\) là trung điểm của cạnh \(BC\) nên ta có:
\[\overrightarrow {MH} \cdot \overrightarrow {MA} = \frac{1}{2}\left( {\overrightarrow {BH} + \overrightarrow {CH} } \right) \cdot \frac{1}{2}\left( {\overrightarrow {BA} + \overrightarrow {CA} } \right)\] \[ = \frac{1}{4}\left( {\overrightarrow {BH} \cdot \overrightarrow {BA} + \overrightarrow {BH} \cdot \overrightarrow {CA} + \overrightarrow {CH} \cdot \overrightarrow {BA} + \overrightarrow {CH} \cdot \overrightarrow {CA} } \right)\]
Vì \(H\) là trực tâm của \[\Delta ABC,\] nên \[BH \bot CA{\rm{ }},{\rm{ }}CH \bot BA\] \[ \Rightarrow \overrightarrow {BH} \cdot \overrightarrow {CA} = 0,{\rm{ }}\overrightarrow {CH} \cdot \overrightarrow {BA} = 0\].
Do đó, \[\overrightarrow {MH} \cdot \overrightarrow {MA} = \frac{1}{4}\left( {\overrightarrow {BH} \cdot \overrightarrow {BA} + \overrightarrow {CH} \cdot \overrightarrow {CA} } \right)\]
\[ = \frac{1}{4}\left[ {\overrightarrow {BH} \cdot \left( {\overrightarrow {BC} + \overrightarrow {CA} } \right) + \overrightarrow {CH} \cdot \left( {\overrightarrow {BA} - \overrightarrow {BC} } \right)} \right] = \frac{1}{4}\left( {\overrightarrow {BH} \cdot \overrightarrow {BC} - \overrightarrow {CH} \cdot \overrightarrow {BC} } \right)\]
\( = \frac{1}{4} \cdot \overrightarrow {BC} \cdot \left( {\overrightarrow {BH} - \overrightarrow {CH} } \right) = \frac{1}{4} \cdot \overrightarrow {BC} \cdot \left( {\overrightarrow {BH} + \overrightarrow {HC} } \right) = \frac{1}{4} \cdot \overrightarrow {BC} \cdot \overrightarrow {BC} = \frac{1}{4}{\overrightarrow {BC} ^2} = \frac{1}{4}B{C^2}\).
Vậy \[\overrightarrow {MH} \cdot \overrightarrow {MA} = \frac{1}{4}B{C^2}\].
Lời giải
Để \(A \cap B \ne \emptyset \) thì điều kiện là \(\left\{ \begin{array}{l}m - 1 < \frac{{m + 3}}{2}\\\left[ \begin{array}{l}m - 1 < - 3\\\frac{{m + 3}}{2} \ge 3\end{array} \right.\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m < 5\\\left[ \begin{array}{l}m < - 2\\m \ge 3\end{array} \right.\end{array} \right.\)\( \Leftrightarrow m \in \left( { - \infty ;\,\, - 2} \right) \cup \left[ {3;\,\,5} \right)\).
Vì \(m\) nguyên dương nên \(m \in \left\{ {3;\,\,4} \right\}\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.