Câu hỏi:

17/11/2025 8 Lưu

Cho tứ giác \(ABCD\)\(AB = 8\,\,{\rm{cm}},\,\,BC = 15\,\,{\rm{cm}},\,\,CD = 18\,\,{\rm{cm}},AD = 10\,\,{\rm{cm, }}BD = 12\,\,{\rm{cm}}{\rm{.}}\)

Media VietJack

Khi đó:

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng.

Ta có: \(\frac{{AB}}{{BD}} = \frac{8}{{12}} = \frac{2}{3};\,\,\frac{{AD}}{{BC}} = \frac{{10}}{{15}} = \frac{2}{3};\,\frac{{BD}}{{DC}} = \frac{{12}}{{18}} = \frac{2}{3}\).

Do đó, \(\frac{{AB}}{{BD}} = \frac{{AD}}{{BC}} = \frac{{BD}}{{DC}}.\)

b) Sai.

Xét \(\Delta ABD\)\(\Delta DBC\), có: \(\frac{{AB}}{{BD}} = \frac{{AD}}{{BC}} = \frac{{BD}}{{DC}}\).

Do đó, \(\Delta ABD \sim \Delta BDC\) (c.c.c).

c) Đúng.

\(\Delta ABD \sim \Delta BDC\) nên \(\widehat {ABD} = \widehat {BDC}\) (hai góc tương ứng).

Mà hai góc này ở vị trí so le trong nên \(AB\parallel CD.\)

c) Sai.

Vì tứ giác \(ABCD\)\(AB\parallel CD\) nên \(ABCD\) là hình thang.

Áp dụng định lí Pythagore đảo vào tam giác \(ABD\) có:

\({8^2} + {10^2} = 164 \ne 144\left( { = {{12}^2}} \right)\) hay \({8^2} + {10^2} \ne {12^2}\) nên tam giác \(ABD\) không vuông tại \(A\).

Do đó, \(ABCD\) không là hình thang vuông.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(NP = 2,5\,\,{\rm{cm}},\,\,AC = 12\,\,{\rm{cm}}.\)  
B. \(NP = 5\,\,{\rm{cm}},\,\,AC = 10\,\,{\rm{cm}}.\)
C. \(NP = 12\,\,{\rm{cm}},\,\,AC = 2,5\,\,{\rm{cm}}.\)            
D. \(NP = 10\,\,{\rm{cm}},\,\,AC = 5\,\,{\rm{cm}}.\)

Lời giải

Đáp án đúng là: C

Media VietJack

\(\Delta ABC \sim \Delta MNP\) nên \(\frac{{AB}}{{MN}} = \frac{{AC}}{{MP}} = \frac{{BC}}{{NP}} = \frac{5}{{10}} = \frac{1}{2}\).

Suy ra \(NP = 12\,\,{\rm{cm}},\,\,AC = 2,5\,\,{\rm{cm}}.\)

Do đó, chọn đáp án C.

Lời giải

a) Đúng.

\(IK\parallel BC\) nên \(\Delta ABC \sim \Delta AIK\).

b) Đúng.

\(\Delta ABC \sim \Delta AIK\) nên \(k = \frac{{IK}}{{BC}} = \frac{4}{{12}} = \frac{1}{3}\).

Do đó, tỉ số đồng dạng của \(\Delta ABC\)\(\Delta AIK\) bằng \(\frac{1}{3}.\)

c) Sai.

\(\Delta ABC \sim \Delta AIK\) nên \(\frac{{IK}}{{BC}} = \frac{{AI}}{{AB}} = \frac{{AK}}{{AC}} = \frac{1}{3}\).

Do đó, \(AI = \frac{1}{3} \cdot AB = \frac{1}{3} \cdot 15 = 5\,\,\,\left( {{\rm{cm}}} \right)\).

d) Sai.

\(\Delta ABC \sim \Delta AIK\) nên \(\widehat {AKI} = \widehat {ACB} = 180^\circ - 50^\circ - 60 = 70^\circ \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP