Cho tứ giác \(ABCD\) có \(AB = 8\,\,{\rm{cm}},\,\,BC = 15\,\,{\rm{cm}},\,\,CD = 18\,\,{\rm{cm}},AD = 10\,\,{\rm{cm, }}BD = 12\,\,{\rm{cm}}{\rm{.}}\)

Khi đó:
Quảng cáo
Trả lời:
a) Đúng.
Ta có: \(\frac{{AB}}{{BD}} = \frac{8}{{12}} = \frac{2}{3};\,\,\frac{{AD}}{{BC}} = \frac{{10}}{{15}} = \frac{2}{3};\,\frac{{BD}}{{DC}} = \frac{{12}}{{18}} = \frac{2}{3}\).
Do đó, \(\frac{{AB}}{{BD}} = \frac{{AD}}{{BC}} = \frac{{BD}}{{DC}}.\)
b) Sai.
Xét \(\Delta ABD\) và \(\Delta DBC\), có: \(\frac{{AB}}{{BD}} = \frac{{AD}}{{BC}} = \frac{{BD}}{{DC}}\).
Do đó, \(\Delta ABD \sim \Delta BDC\) (c.c.c).
c) Đúng.
Vì \(\Delta ABD \sim \Delta BDC\) nên \(\widehat {ABD} = \widehat {BDC}\) (hai góc tương ứng).
Mà hai góc này ở vị trí so le trong nên \(AB\parallel CD.\)
c) Sai.
Vì tứ giác \(ABCD\) có \(AB\parallel CD\) nên \(ABCD\) là hình thang.
Áp dụng định lí Pythagore đảo vào tam giác \(ABD\) có:
\({8^2} + {10^2} = 164 \ne 144\left( { = {{12}^2}} \right)\) hay \({8^2} + {10^2} \ne {12^2}\) nên tam giác \(ABD\) không vuông tại \(A\).
Do đó, \(ABCD\) không là hình thang vuông.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
b) \(\Delta ABC \sim \Delta ANM\).
Lời giải

a) Đúng.
Ta có: \(MN\parallel BC\) nên theo định lí Thalès, ta có: \(\frac{{AM}}{{AB}} = \frac{{AN}}{{AC}} = \frac{{MN}}{{BC}}\).
b) Sai.
Ta có: \(\frac{{AM}}{{AB}} = \frac{{AN}}{{AC}} = \frac{{MN}}{{BC}}\) (cmt) nên \(\Delta ABC \sim \Delta AMN\) (c.c.c).
c) Đúng.
Từ a) ta có: \(\frac{{AM}}{{AB}} = \frac{{AN}}{{AC}} = \frac{{MN}}{{BC}}\) hay \(\frac{{AM}}{4} = \frac{{AN}}{6} = \frac{{MN}}{8} = \frac{{BM}}{6} = \frac{{AM + BM}}{{4 + 6}} = \frac{{AB}}{{10}} = \frac{4}{{10}}\).
Do đó, \(AN = \frac{4}{{10}}AC = \frac{4}{{10}}.6 = 2,4{\rm{ cm}}\).
\(MN = \frac{4}{{10}}.8 = 3,2{\rm{ cm}}\).
d) Đúng.
Ta có \(\Delta AMN \sim \Delta ABC\) theo tỉ số đồng dạng \(k = \frac{4}{{10}} = \frac{2}{5}\) (từ câu b).
Do đó, \(\frac{{{S_{ANM}}}}{{{S_{ABC}}}} = \frac{{M{N^2}}}{{B{C^2}}} = \frac{{{2^2}}}{{{5^2}}} = \frac{4}{{25}}\).
Lời giải
Đáp án: 16
Vì \(ME\parallel AB\) nên \(\Delta EMC \sim \Delta ABC\) nên \(\frac{{MC}}{{BC}} = \frac{{EM}}{{AB}} = \frac{{EC}}{{AC}} = \frac{2}{3}\).
Do đó, \({P_{EMC}} = \frac{2}{3}{P_{ABC}} = \frac{2}{3} \cdot 24 = 16\,\,\left( {{\rm{cm}}} \right)\)
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
