Câu hỏi:

17/11/2025 160 Lưu

(1 điểm) Cho tam giác \(ABC\) vuông tại \(A\)\[BC = 2a\], \(M\) là điểm trên đoạn \(BC\) sao cho \[MB = 2MC\]. Biết rằng \[\overrightarrow {AM} \cdot \overrightarrow {BC} = {a^2}\]. Tính độ dài cạnh \(AC\)?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Từ giả thiết \(M\) là điểm trên đoạn \(BC\) sao cho \[MB = 2MC\] nên ta có \[\overrightarrow {BM} = \frac{1}{3}\overrightarrow {BC} \].

Đặt \[AB = x;{\rm{ }}AC = y\] ta có \[{x^2} + {y^2} = 4{a^2}\] (1) (Tam giác \(ABC\) vuông tại \(A\))

Mặt khác từ \[\overrightarrow {AM} = \overrightarrow {AB} + \overrightarrow {BM} = \overrightarrow {AB} + \frac{1}{3}\overrightarrow {BC} = \overrightarrow {AB} + \frac{1}{3}\left( {\overrightarrow {AC} - \overrightarrow {AB} } \right) = \frac{2}{3}\overrightarrow {AB} + \frac{1}{3}\overrightarrow {AC} \].

Nên có \[\overrightarrow {AM} \cdot \overrightarrow {BC} = {a^2} \Leftrightarrow \left( {\frac{2}{3}\overrightarrow {AB} + \frac{1}{3}\overrightarrow {AC} } \right)\left( {\overrightarrow {AC} - \overrightarrow {AB} } \right) = {a^2}\]

\[ \Leftrightarrow \frac{1}{3}{\overrightarrow {AC} ^2} - \frac{2}{3}{\overrightarrow {AB} ^2} = {a^2}\,\,{\rm{ }}\left( {{\rm{Do }}\overrightarrow {AB} \cdot \overrightarrow {AC} = 0} \right)\]

\[ \Leftrightarrow \frac{1}{3}{y^2} - \frac{2}{3}{x^2} = {a^2}\,\,\,(2)\]

Từ (1) và (2) ta có \[y = \frac{{a\sqrt {33} }}{3}\]. Vậy \[AC = \frac{{a\sqrt {33} }}{3}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. – 2;                         
B. 2;                                 
C. \(2\sqrt 3 \);      
D. \(3\sqrt 2 \).

Lời giải

Đáp án đúng là: B

Đáp án đúng là: B (ảnh 1)

\[ABCD\] là hình thoi nên \(AC\) là tia phân giác của góc \(BAD\).

Khi đó \(\widehat {BAC} = \frac{1}{2}\widehat {BAD} = 60^\circ \).

Tam giác \(ABC\)\(AB = BC\)\(\widehat {BAC} = 60^\circ \) nên tam giác \(ABC\) đều.

Do đó, \(AC = AB = BC = 2\)\(\widehat {ACB} = 60^\circ \).

Ta có: \(\overrightarrow {AC} \cdot \overrightarrow {BC} = \left( { - \overrightarrow {CA} } \right) \cdot \left( { - \overrightarrow {CB} } \right) = \overrightarrow {CA} \cdot \overrightarrow {CB} \)\( = \left| {\overrightarrow {CA} } \right| \cdot \left| {\overrightarrow {CB} } \right| \cdot \cos \left( {\overrightarrow {CA} ,\,\,\overrightarrow {CB} } \right)\)

\( = CA \cdot CB \cdot \cos \widehat {ACB} = 2 \cdot 2 \cdot \cos 60^\circ = 2\).

Câu 2

A. \(\overrightarrow {MN} = - \frac{1}{4}\overrightarrow {AB} + \frac{1}{4}\overrightarrow {AD} \);   
B. \(\overrightarrow {MN} = - \frac{1}{4}\overrightarrow {AB} - \frac{1}{4}\overrightarrow {AD} \);    
C. \(\overrightarrow {MN} = \frac{1}{4}\overrightarrow {AB} + \frac{1}{4}\overrightarrow {AD} \);   
D. \(\overrightarrow {MN} = \frac{1}{4}\overrightarrow {AB} - \frac{1}{4}\overrightarrow {AD} \).

Lời giải

Đáp án đúng là: A

Đáp án đúng là: B (ảnh 1)

\(ABCD\) là hình bình hành nên theo quy tắc hình bình hành ta có: \(\overrightarrow {AC} = \overrightarrow {AB} + \overrightarrow {AD} \).

Do đó, \(\overrightarrow {MN} = \overrightarrow {AN} - \overrightarrow {AM} = \frac{1}{4}\overrightarrow {AC} - \frac{1}{2}\overrightarrow {AB} = \frac{1}{4}\left( {\overrightarrow {AB} + \overrightarrow {AD} } \right) - \frac{1}{2}\overrightarrow {AB} = - \frac{1}{4}\overrightarrow {AB} + \frac{1}{4}\overrightarrow {AD} \).

Câu 4

Mệnh đề đảo của mệnh đề: “Nếu hình bình hành ABCD có một góc vuông thì nó là hình chữ nhật” là mệnh đề

A. “Từ hình bình hành \(ABCD\) có một góc vuông suy ra nó là hình chữ nhật”;  
B. “Nếu tứ giác \(ABCD\)hình chữ nhật thì nó là hình bình hành có một góc vuông”;
C. Hình bình hành \(ABCD\) có một góc vuông kéo theo nó là hình chữ nhật”;                                                    
D. “Nếu hình chữ nhật \(ABCD\) có một góc vuông thì nó là hình bình hành”.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(M = \left\{ { - 1;\,\,15} \right\}\);                
B. \(M = \left( { - 1;\,\,15} \right)\);   
C. \(M = \left[ { - 1;\,\,15} \right)\);                                    
D. \(M = \left[ { - 1;\,\,15} \right]\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\overrightarrow a \cdot \overrightarrow b = \left| {\overrightarrow a } \right| \cdot \left| {\overrightarrow b } \right| \cdot \left| {\cos \left( {\overrightarrow a ,\,\,\overrightarrow b } \right)} \right|\);          
B. \(\left| {\overrightarrow a \cdot \overrightarrow b } \right| = \left| {\overrightarrow a } \right| \cdot \left| {\overrightarrow b } \right| \cdot \cos \left( {\overrightarrow a ,\,\,\overrightarrow b } \right)\);                       
C. \(\overrightarrow a \cdot \overrightarrow b = \left| {\overrightarrow a } \right| \cdot \left| {\overrightarrow b } \right| \cdot \sin \left( {\overrightarrow a ,\,\,\overrightarrow b } \right)\);                       
D. \(\overrightarrow a \cdot \overrightarrow b = \left| {\overrightarrow a } \right| \cdot \left| {\overrightarrow b } \right| \cdot \cos \left( {\overrightarrow a ,\,\,\overrightarrow b } \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP