Câu hỏi:

17/11/2025 16 Lưu

II. Tự luận (4 điểm)

(1 điểm) Trong một hội thi hùng biện ngôn ngữ có 200 thí sinh tham dự. Mỗi thí sinh tham gia thi một hoặc hai hoặc ba thứ tiếng: Hàn Quốc, Trung Quốc hoặc Anh. Biết rằng có 78 thí sinh chỉ thi tiếng Anh, 70 thí sinh thi tiếng Hàn Quốc, 80 thí sinh thi tiếng Trung Quốc, 18 thí sinh thi cả tiếng Hàn Quốc và tiếng Trung Quốc. Hỏi có bao nhiêu thí sinh thi cả 3 thứ tiếng?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Từ bài toán đã cho ta có sơ đồ Venn như sau:

Trong một hội thi hùng biện ngôn ngữ có 200 thí sinh tham dự. Mỗi thí sinh tham gia thi một hoặc hai hoặc ba thứ tiếng: Hàn Quốc, Trung Quốc hoặc Anh. Biết rằng có 78 thí sinh chỉ thi tiếng Anh, 70 thí sinh thi tiếng Hàn Quốc (ảnh 1)

Số thí sinh thi tiếng Hàn Quốc hoặc tiếng Trung Quốc là:

200 – 78 = 122 (thí sinh)

Số thí sinh cả hai thứ tiếng Hàn Quốc và Trung Quốc là:

(70 + 80) – 122 = 28 (thí sinh)

Số thí sinh thi cả ba thứ tiếng là:

28 – 18 = 10 (thí sinh)

Vậy có 10 thí sinh thi cả ba thứ tiếng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác \(ABC\) đều cạn (ảnh 1)

Gọi \(O\), \(R\) lần lượt là tâm và bán kính của đường tròn ngoại tiếp tam giác \(ABC\).

Gọi \(A'\) là điểm đối xứng với \(A\) qua \(O\).

Ta có:

\(P = M{A^2} - M{B^2} - M{C^2}\)

\( = {\overrightarrow {MA} ^2} - {\overrightarrow {MB} ^2} - {\overrightarrow {MC} ^2}\)

\( = {\left( {\overrightarrow {MO} + \overrightarrow {OA} } \right)^2} - {\left( {\overrightarrow {MO} + \overrightarrow {OB} } \right)^2} - {\left( {\overrightarrow {MO} + \overrightarrow {OC} } \right)^2}\)

\( = \left( {\overrightarrow {MO} + \overrightarrow {OA} - \overrightarrow {MO} - \overrightarrow {OB} } \right)\left( {\overrightarrow {MO} + \overrightarrow {OA} + \overrightarrow {MO} + \overrightarrow {OB} } \right) - {\left( {\overrightarrow {MO} + \overrightarrow {OC} } \right)^2}\)

\( = \left( {\overrightarrow {OA} - \overrightarrow {OB} } \right)\left( {2\overrightarrow {MO} + \overrightarrow {OA} + \overrightarrow {OB} } \right) - \left( {M{O^2} + 2\overrightarrow {MO} \cdot \overrightarrow {OC} + O{C^2}} \right)\)

\( = 2\overrightarrow {OA} \cdot \overrightarrow {MO} + O{A^2} + \overrightarrow {OA} \cdot \overrightarrow {OB} - 2\overrightarrow {OB} \cdot \overrightarrow {MO} - \overrightarrow {OB} \cdot \overrightarrow {OA} - O{B^2} - M{O^2} - 2\overrightarrow {MO} \cdot \overrightarrow {OC} - O{C^2}\)

\( = - M{O^2} - 2\overrightarrow {MO} \left( {\overrightarrow {OA} - \overrightarrow {OB} - \overrightarrow {OC} } \right) + O{A^2} - O{B^2} - O{C^2}\)

\( = - 2{R^2} + 2\overrightarrow {MO} \left( {\overrightarrow {OA} - \overrightarrow {OA'} } \right)\)

\( = - 2{R^2} + 2\overrightarrow {MO} \cdot 2\overrightarrow {OA} \)

\( = - 2{R^2} - 4\overrightarrow {OM} \cdot \overrightarrow {OA} \)

\( = - 2{R^2} - 4{R^2} \cdot \cos \left( {\overrightarrow {OM} ,\,\overrightarrow {OA} } \right)\).

Ta có:

\(b = {P_{\min }} = - 6{R^2} \Leftrightarrow \cos \left( {\overrightarrow {OM} ,\,\overrightarrow {OA} } \right) = 1 \Leftrightarrow M \equiv A\)

\(a = {P_{\max }} = 2{R^2} \Leftrightarrow \cos \left( {\overrightarrow {OM} ,\overrightarrow {OA} } \right) = - 1 \Leftrightarrow M \equiv A'\)

\( \Rightarrow T = 4a + 3b = 4 \cdot 2{R^2} + 3 \cdot \left( { - 6{R^2}} \right) = - 10{R^2}\)

Tam giác đều cạnh 3 cm có: \[{S_{ABC}} = \frac{1}{2}AB \cdot AC \cdot \sin \widehat {BAC} = \frac{1}{2} \cdot 3 \cdot 3 \cdot \sin 60^\circ = \frac{{9\sqrt 3 }}{4}\].

Do đó, \(R = \frac{{AB \cdot AC \cdot BC}}{{4{S_{ABC}}}} = \frac{{3 \cdot 3 \cdot 3}}{{4 \cdot \frac{{9 \cdot \sqrt 3 }}{4}}} = \sqrt 3 \).

Vậy \[T = - 10{R^2} = - 10 \cdot {\left( {\sqrt 3 } \right)^2} = - 30\].

Câu 2

A. \(k \cdot a\);           
B. \(\overrightarrow k \cdot \overrightarrow a \); 
C. \(k \cdot \left| {\overrightarrow a } \right|\);                      
D. \(\left| k \right|\left| {\overrightarrow a } \right|\).

Lời giải

Đáp án đúng là: D

Cho vectơ \(\overrightarrow a \) khác vectơ – không, số thực k khác 0, ta có: \(\left| {k\overrightarrow a } \right| = \left| k \right| \cdot \left| {\overrightarrow a } \right|\).

Câu 3

A. \(\overrightarrow {AB} \)\(\overrightarrow {ED} \) có cùng điểm cuối;                                                  

B. \[\overrightarrow {CO} = \overrightarrow {DE} \];                                                                                  
C. Đường thẳng \(AB\) là giá của vectơ \(\overrightarrow {FC} \);                                                                
D. \[\overrightarrow {OA} \]\[\overrightarrow {OB} \] là hai vectơ đối nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\overrightarrow a \bot \overrightarrow b \);          
B. \(\overrightarrow a \)\(\overrightarrow b \) cùng phương;                                                                                  
C. \(\overrightarrow a \)\(\overrightarrow b \) song song;                                                                             
D. \(\left| {\overrightarrow a } \right| = \left| {\overrightarrow b } \right| = 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\frac{1}{2}a{h_a}\);                                   
B. \(\sqrt {p\left( {p + a} \right)\left( {p + b} \right)\left( {p + c} \right)} \);
C. \(\frac{1}{2}bc\sin \beta \);                            
D. \(\frac{1}{2}ab\sin \alpha \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A.\(\left\{ {2;5} \right\}\);                                   
B. \(\left\{ {4; - 1; - 2} \right\}\);         
C. \(\left\{ {1; - 1;0} \right\}\);                     
D. \(\left\{ {3; - 3} \right\}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. 5 cm;                       
B. 6 cm;                           
C. 7 cm;                              
D. 1 cm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP