Câu hỏi:

17/11/2025 12 Lưu

Bánh xe đạp của người đi xe đạp quay được 2 vòng trong 5 giây. Hỏi trong 2 giây, bánh xe quay được một góc bao nhiêu radian?

A.

\(\frac{5}{8}\pi .\)

B.

\(\frac{8}{5}\pi .\)

C.

\(\frac{5}{3}\pi .\)

D.

\(\frac{3}{5}\pi .\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Trong 2 giây bánh xe đạp quay được \(\frac{{2.2}}{5} = \frac{4}{5}\) vòng, tức là quay được cung có độ dài \(l = \frac{4}{5}.2\pi R = \frac{8}{5}\pi R.\)

Ta có: \(l = R.\alpha \Leftrightarrow \alpha = \frac{l}{R} = \frac{{\frac{8}{5}\pi R}}{R} = \frac{8}{5}\pi \,\,\left( {{\rm{rad}}} \right).\)

Vậy trong 2 giây, bánh xe quay được một góc \(\frac{8}{5}\pi \) radian.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

\(\left( {BMN} \right){\rm{//}}\left( {SCD} \right).\)

\(\left( {BMN} \right){\rm{//}}\left( {SAD} \right).\)

\(\left( {BMN} \right){\rm{//}}\left( {ABCD} \right).\)

\(\left( {BMN} \right){\rm{//}}\left( {SBC} \right).\)

Lời giải

Đáp án đúng là: A

Cho hình chóp  S . A B C D  với đáy  A B C D  là hình thang có  A D / / B C  và  A D = 2 B C .  Gọi  M , N  lần lượt là trung điểm của  S A  và  A D .  Mệnh đề nào sau đây đúng? (ảnh 1)

Vì \(N\) là trung điểm của \(AD\) nên \(NA = ND = \frac{{AD}}{2} = BC.\)

Xét tứ giác \(BCDN\) có: \(ND = BC\) và \(ND{\rm{//}}BC\) (do \(AD{\rm{//}}BC\)).

Suy ra \(BCDN\) là hình bình hành.

\( \Rightarrow NB{\rm{//}}CD\) mà \(CD \subset \left( {SCD} \right)\) nên \(NB{\rm{//}}\left( {SCD} \right).\)

Xét tam giác \(SAD\) có: \(M,\,\,N\) lần lượt là trung điểm của \(SA\) và \(AD.\)

Suy ra \(MN\) là đường trung bình của tam giác \(SAD.\)

\( \Rightarrow MN{\rm{//}}SD\) mà \(SD \subset \left( {SCD} \right)\) nên \(MN{\rm{//}}\left( {SCD} \right).\)

Ta có: \(NB{\rm{//}}\left( {SCD} \right);\,\,MN{\rm{//}}\left( {SCD} \right)\) và \(NB \cap MN = N\) trong \(\left( {BMN} \right).\)

\( \Rightarrow \left( {BMN} \right){\rm{//}}\left( {SCD} \right).\)

Câu 2

\(\left( {ABCD} \right){\rm{//}}\left( {A'B'C'D'} \right).\)

\(\left( {ABB'A'} \right){\rm{//}}\left( {CDD'C'} \right).\)

\(\left( {AA'D'D} \right){\rm{//}}\left( {BB'C'C} \right).\)

\(\left( {BDD'B'} \right){\rm{//}}\left( {ACC'A'} \right).\)

Lời giải

Đáp án đúng là: D

Cho hình hộp  A B C D . A ′ B ′ C ′ D ′ .  Mệnh đề nào sau đây sai? (ảnh 1)

Vì \(ABCD.A'B'C'D'\) là hình hộp nên ta có: \(\left\{ \begin{array}{l}\left( {ABCD} \right){\rm{//}}\left( {A'B'C'D'} \right)\\\left( {AA'D'D} \right){\rm{//}}\left( {BB'C'C} \right)\\\left( {ABB'A'} \right){\rm{//}}\left( {CDD'C'} \right)\end{array} \right.\)

Như vậy, ba phương án A, B, C đúng.

Phương án D sai vì:

Gọi \(O = AC \cap BD.\)

Mà \(AC \subset \left( {ACC'A'} \right);\,\,BD \subset \left( {BDD'B'} \right).\)

\( \Rightarrow O \in \left( {BDD'B'} \right) \cap \left( {ACC'A'} \right).\)

Suy ra hai mặt phẳng \(\left( {BDD'B'} \right)\) và \(\left( {ACC'A'} \right)\) không song song với nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Nếu \(b{\rm{//}}\left( \alpha \right)\) thì \(b{\rm{//}}a.\)

Nếu \(b{\rm{//}}a\) thì \(b{\rm{//}}\left( \alpha \right).\)

Nếu \(b\) cắt \(\left( \alpha \right)\) và \(\left( \beta \right)\) chứa \(b\) thì giao tuyến của \(\left( \alpha \right)\) và \(\left( \beta \right)\) là đường thẳng cắt cả \(a\) và \(b.\)

Nếu \(b\) cắt \(\left( \alpha \right)\) thì \(b\) cắt \(a.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP