Câu hỏi:

18/11/2025 66 Lưu

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Gọi \(\Delta \) là giao tuyến của hai mặt phẳng \(\left( {SAD} \right)\) và \(\left( {SBC} \right)\). Đường thẳng \(\Delta \) song song với đường thẳng nào dưới đây?

Đường thẳng \(AB\).

Đường thẳng \(AD\).

Đường thẳng \(AC\).

Đường thẳng \(SA\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Cho hình chóp  S . A B C D  có đáy  A B C D  là hình bình hành. Gọi  Δ  là giao tuyến của hai mặt phẳng  ( S A D )  và  ( S B C ) . Đường thẳng  Δ  song song với đường thẳng nào dưới đây? (ảnh 1)

Hai mặt phẳng \(\left( {SAD} \right)\) và \(\left( {SBC} \right)\) có chung điểm \(S\) và lần lượt chứa hai đường thẳng song song \(AD,\,\,BC\) (do \(ABCD\) là hình bình hành) nên giao tuyến \(\Delta \) đi qua \(S\) và lần lượt song song với \(AD,\,\,BC.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

\(\left( {BMN} \right){\rm{//}}\left( {SCD} \right).\)

\(\left( {BMN} \right){\rm{//}}\left( {SAD} \right).\)

\(\left( {BMN} \right){\rm{//}}\left( {ABCD} \right).\)

\(\left( {BMN} \right){\rm{//}}\left( {SBC} \right).\)

Lời giải

Đáp án đúng là: A

Cho hình chóp  S . A B C D  với đáy  A B C D  là hình thang có  A D / / B C  và  A D = 2 B C .  Gọi  M , N  lần lượt là trung điểm của  S A  và  A D .  Mệnh đề nào sau đây đúng? (ảnh 1)

Vì \(N\) là trung điểm của \(AD\) nên \(NA = ND = \frac{{AD}}{2} = BC.\)

Xét tứ giác \(BCDN\) có: \(ND = BC\) và \(ND{\rm{//}}BC\) (do \(AD{\rm{//}}BC\)).

Suy ra \(BCDN\) là hình bình hành.

\( \Rightarrow NB{\rm{//}}CD\) mà \(CD \subset \left( {SCD} \right)\) nên \(NB{\rm{//}}\left( {SCD} \right).\)

Xét tam giác \(SAD\) có: \(M,\,\,N\) lần lượt là trung điểm của \(SA\) và \(AD.\)

Suy ra \(MN\) là đường trung bình của tam giác \(SAD.\)

\( \Rightarrow MN{\rm{//}}SD\) mà \(SD \subset \left( {SCD} \right)\) nên \(MN{\rm{//}}\left( {SCD} \right).\)

Ta có: \(NB{\rm{//}}\left( {SCD} \right);\,\,MN{\rm{//}}\left( {SCD} \right)\) và \(NB \cap MN = N\) trong \(\left( {BMN} \right).\)

\( \Rightarrow \left( {BMN} \right){\rm{//}}\left( {SCD} \right).\)

Lời giải

Cho hình chóp  S . A B C D  có đáy là hình bình hành tâm  O .  Gọi  M , N  lần lượt là trung điểm của  S A , C D . (ảnh 1)

a) • Xét \(\Delta SAC\) có: \(M,\,\,O\) lần lượt là trung điểm của \(SA,\,\,AC\) nên \(MO\) là đường trung bình của \(\Delta SAC\), suy ra \[MO{\rm{//}}SC.\]

Mà \(SC \subset \left( {SBC} \right) \Rightarrow MO{\rm{//}}\left( {SBC} \right).\)

• Xét \[\Delta DCB\] có: \(N,\,\,O\) lần lượt là trung điểm của \[CD,\,\,BD\] nên \(NO\) là đường trung bình của \[\Delta DCB\], suy ra \(NO{\rm{//}}BC.\)

Mà \(BC \subset \left( {SBC} \right) \Rightarrow NO{\rm{//}}\left( {SBC} \right).\)

Ta có: \(MO{\rm{//}}\left( {SBC} \right);\,\,NO{\rm{//}}\left( {SBC} \right)\) và \(MO \cap NO = O\) trong \(\left( {OMN} \right).\)

\( \Rightarrow \left( {OMN} \right){\rm{//}}\left( {SBC} \right).\)

Vậy (OMN) // (SBC).

b) Ta có: \(J\) một điểm trên \(\left( {ABCD} \right)\) và cách đều \(AB,\,\,CD;\)

\(AB{\rm{//}}CD\) (do \(ABCD\) là hình bình hành).

Suy ra \(J\) thuộc đường thẳng đi qua \(O\) và song song với \(AB\) và \(CD.\)

Trong \(\left( {ABCD} \right)\) gọi \(H = OJ \cap AD,\,\,H \in AD.\)

Khi đó \(OH{\rm{//}}AB.\)

Xét \(\Delta ABD\) có: \(OH{\rm{//AB}}\) và \(O\) là trung điểm của \(BD.\)

Suy ra \(H\) là trung điểm của \(AD.\)

Xét \(\Delta SAD\) có: \(I,\,\,H\) lần lượt là trung điểm của \(SD,\,\,AD\) nên \(IH\) là đường trung bình của \(\Delta SAD\), suy ra \[{\rm{IH//}}SA.\]

Mà \(SA \subset \left( {SAB} \right) \Rightarrow IH{\rm{//}}\left( {SAB} \right).\)

Do \(J \in OH\) nên \(JH{\rm{//AB}}\) (do \(OH{\rm{//}}AB\)).

Mà \(AB \subset \left( {SAB} \right)\) nên \(JH{\rm{//}}\left( {SAB} \right).\)

Ta có: \(JH{\rm{//}}\left( {SAB} \right);\,\,IH{\rm{//}}\left( {SAB} \right)\) và \(JH \cap IH = H\) trong \(\left( {IJH} \right).\)

\( \Rightarrow \left( {IJH} \right){\rm{//}}\left( {SAB} \right).\)

\( \Rightarrow IJ{\rm{//}}\left( {SAB} \right)\) (do \(IJ \subset \left( {IJH} \right)\)).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

\(\left( {ABCD} \right){\rm{//}}\left( {A'B'C'D'} \right).\)

\(\left( {ABB'A'} \right){\rm{//}}\left( {CDD'C'} \right).\)

\(\left( {AA'D'D} \right){\rm{//}}\left( {BB'C'C} \right).\)

\(\left( {BDD'B'} \right){\rm{//}}\left( {ACC'A'} \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP