Câu hỏi:

18/11/2025 24 Lưu

Cho đường thẳng \(a\) nằm trong mặt phẳng \(\left( \alpha \right)\) và đường thẳng \(b\) không thuộc \(\left( \alpha \right).\) Mệnh đề nào sau đây đúng?

Nếu \(b{\rm{//}}\left( \alpha \right)\) thì \(b{\rm{//}}a.\)

Nếu \(b{\rm{//}}a\) thì \(b{\rm{//}}\left( \alpha \right).\)

Nếu \(b\) cắt \(\left( \alpha \right)\) và \(\left( \beta \right)\) chứa \(b\) thì giao tuyến của \(\left( \alpha \right)\) và \(\left( \beta \right)\) là đường thẳng cắt cả \(a\) và \(b.\)

Nếu \(b\) cắt \(\left( \alpha \right)\) thì \(b\) cắt \(a.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Phương án B đúng: Ta có \(b{\rm{//}}a\) mà \(a\) nằm trong mặt phẳng \(\left( \alpha \right)\) nên \(b{\rm{//}}\left( \alpha \right).\)

Ba phương án còn lại sai vì:

Phương án A: Nếu \(b{\rm{//}}\left( \alpha \right)\) thì \(b{\rm{//}}a\) hoặc \(a\) và \(b\) chéo nhau.

Phương án C: Nếu \(b\) cắt \(\left( \alpha \right)\) và \(\left( \beta \right)\) chứa \(b\) thì giao tuyến của \(\left( \alpha \right)\) và \(\left( \beta \right)\) là đường thẳng cắt \(a\) hoặc song song với \(a.\)

Phương án D: Nếu \(b\) cắt \(\left( \alpha \right)\) thì \(b\) cắt \(a\) hoặc \(a\) và \(b\) chéo nhau.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

\(\left( {BMN} \right){\rm{//}}\left( {SCD} \right).\)

\(\left( {BMN} \right){\rm{//}}\left( {SAD} \right).\)

\(\left( {BMN} \right){\rm{//}}\left( {ABCD} \right).\)

\(\left( {BMN} \right){\rm{//}}\left( {SBC} \right).\)

Lời giải

Đáp án đúng là: A

Cho hình chóp  S . A B C D  với đáy  A B C D  là hình thang có  A D / / B C  và  A D = 2 B C .  Gọi  M , N  lần lượt là trung điểm của  S A  và  A D .  Mệnh đề nào sau đây đúng? (ảnh 1)

Vì \(N\) là trung điểm của \(AD\) nên \(NA = ND = \frac{{AD}}{2} = BC.\)

Xét tứ giác \(BCDN\) có: \(ND = BC\) và \(ND{\rm{//}}BC\) (do \(AD{\rm{//}}BC\)).

Suy ra \(BCDN\) là hình bình hành.

\( \Rightarrow NB{\rm{//}}CD\) mà \(CD \subset \left( {SCD} \right)\) nên \(NB{\rm{//}}\left( {SCD} \right).\)

Xét tam giác \(SAD\) có: \(M,\,\,N\) lần lượt là trung điểm của \(SA\) và \(AD.\)

Suy ra \(MN\) là đường trung bình của tam giác \(SAD.\)

\( \Rightarrow MN{\rm{//}}SD\) mà \(SD \subset \left( {SCD} \right)\) nên \(MN{\rm{//}}\left( {SCD} \right).\)

Ta có: \(NB{\rm{//}}\left( {SCD} \right);\,\,MN{\rm{//}}\left( {SCD} \right)\) và \(NB \cap MN = N\) trong \(\left( {BMN} \right).\)

\( \Rightarrow \left( {BMN} \right){\rm{//}}\left( {SCD} \right).\)

Câu 2

\(\left( {ABCD} \right){\rm{//}}\left( {A'B'C'D'} \right).\)

\(\left( {ABB'A'} \right){\rm{//}}\left( {CDD'C'} \right).\)

\(\left( {AA'D'D} \right){\rm{//}}\left( {BB'C'C} \right).\)

\(\left( {BDD'B'} \right){\rm{//}}\left( {ACC'A'} \right).\)

Lời giải

Đáp án đúng là: D

Cho hình hộp  A B C D . A ′ B ′ C ′ D ′ .  Mệnh đề nào sau đây sai? (ảnh 1)

Vì \(ABCD.A'B'C'D'\) là hình hộp nên ta có: \(\left\{ \begin{array}{l}\left( {ABCD} \right){\rm{//}}\left( {A'B'C'D'} \right)\\\left( {AA'D'D} \right){\rm{//}}\left( {BB'C'C} \right)\\\left( {ABB'A'} \right){\rm{//}}\left( {CDD'C'} \right)\end{array} \right.\)

Như vậy, ba phương án A, B, C đúng.

Phương án D sai vì:

Gọi \(O = AC \cap BD.\)

Mà \(AC \subset \left( {ACC'A'} \right);\,\,BD \subset \left( {BDD'B'} \right).\)

\( \Rightarrow O \in \left( {BDD'B'} \right) \cap \left( {ACC'A'} \right).\)

Suy ra hai mặt phẳng \(\left( {BDD'B'} \right)\) và \(\left( {ACC'A'} \right)\) không song song với nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP