Câu hỏi:

17/11/2025 44 Lưu

Đặc điểm nào sau đây là đúng với hình lăng trụ?

A.

Đáy của hình lăng trụ phải là hình bình hành.

B.

Hình lăng trụ có tất cả các mặt song song với nhau.

C.

Hình lăng trụ có tất cả các mặt bên là hình bình hành.

D.

Hình lăng trụ có tất cả các mặt là hình bình hành.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: C

Theo tính chất của hình lăng trụ ta có: Hình lăng trụ có tất cả các mặt bên là hình bình hành.

Ba phương án còn lại sai vì:

Phương án A: Đáy của hình lăng trụ có thể là hình tam giác (hình lăng trụ tam giác).

Phương án B: Hai mặt bên liền kề nhau thì cắt nhau.

Phương án D: Đáy của hình lăng trụ có thể là hình tam giác (hình lăng trụ tam giác).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

\(\left( {BMN} \right){\rm{//}}\left( {SCD} \right).\)

\(\left( {BMN} \right){\rm{//}}\left( {SAD} \right).\)

\(\left( {BMN} \right){\rm{//}}\left( {ABCD} \right).\)

\(\left( {BMN} \right){\rm{//}}\left( {SBC} \right).\)

Lời giải

Đáp án đúng là: A

Cho hình chóp  S . A B C D  với đáy  A B C D  là hình thang có  A D / / B C  và  A D = 2 B C .  Gọi  M , N  lần lượt là trung điểm của  S A  và  A D .  Mệnh đề nào sau đây đúng? (ảnh 1)

Vì \(N\) là trung điểm của \(AD\) nên \(NA = ND = \frac{{AD}}{2} = BC.\)

Xét tứ giác \(BCDN\) có: \(ND = BC\) và \(ND{\rm{//}}BC\) (do \(AD{\rm{//}}BC\)).

Suy ra \(BCDN\) là hình bình hành.

\( \Rightarrow NB{\rm{//}}CD\) mà \(CD \subset \left( {SCD} \right)\) nên \(NB{\rm{//}}\left( {SCD} \right).\)

Xét tam giác \(SAD\) có: \(M,\,\,N\) lần lượt là trung điểm của \(SA\) và \(AD.\)

Suy ra \(MN\) là đường trung bình của tam giác \(SAD.\)

\( \Rightarrow MN{\rm{//}}SD\) mà \(SD \subset \left( {SCD} \right)\) nên \(MN{\rm{//}}\left( {SCD} \right).\)

Ta có: \(NB{\rm{//}}\left( {SCD} \right);\,\,MN{\rm{//}}\left( {SCD} \right)\) và \(NB \cap MN = N\) trong \(\left( {BMN} \right).\)

\( \Rightarrow \left( {BMN} \right){\rm{//}}\left( {SCD} \right).\)

Lời giải

Cho hình chóp  S . A B C D  có đáy là hình bình hành tâm  O .  Gọi  M , N  lần lượt là trung điểm của  S A , C D . (ảnh 1)

a) • Xét \(\Delta SAC\) có: \(M,\,\,O\) lần lượt là trung điểm của \(SA,\,\,AC\) nên \(MO\) là đường trung bình của \(\Delta SAC\), suy ra \[MO{\rm{//}}SC.\]

Mà \(SC \subset \left( {SBC} \right) \Rightarrow MO{\rm{//}}\left( {SBC} \right).\)

• Xét \[\Delta DCB\] có: \(N,\,\,O\) lần lượt là trung điểm của \[CD,\,\,BD\] nên \(NO\) là đường trung bình của \[\Delta DCB\], suy ra \(NO{\rm{//}}BC.\)

Mà \(BC \subset \left( {SBC} \right) \Rightarrow NO{\rm{//}}\left( {SBC} \right).\)

Ta có: \(MO{\rm{//}}\left( {SBC} \right);\,\,NO{\rm{//}}\left( {SBC} \right)\) và \(MO \cap NO = O\) trong \(\left( {OMN} \right).\)

\( \Rightarrow \left( {OMN} \right){\rm{//}}\left( {SBC} \right).\)

Vậy (OMN) // (SBC).

b) Ta có: \(J\) một điểm trên \(\left( {ABCD} \right)\) và cách đều \(AB,\,\,CD;\)

\(AB{\rm{//}}CD\) (do \(ABCD\) là hình bình hành).

Suy ra \(J\) thuộc đường thẳng đi qua \(O\) và song song với \(AB\) và \(CD.\)

Trong \(\left( {ABCD} \right)\) gọi \(H = OJ \cap AD,\,\,H \in AD.\)

Khi đó \(OH{\rm{//}}AB.\)

Xét \(\Delta ABD\) có: \(OH{\rm{//AB}}\) và \(O\) là trung điểm của \(BD.\)

Suy ra \(H\) là trung điểm của \(AD.\)

Xét \(\Delta SAD\) có: \(I,\,\,H\) lần lượt là trung điểm của \(SD,\,\,AD\) nên \(IH\) là đường trung bình của \(\Delta SAD\), suy ra \[{\rm{IH//}}SA.\]

Mà \(SA \subset \left( {SAB} \right) \Rightarrow IH{\rm{//}}\left( {SAB} \right).\)

Do \(J \in OH\) nên \(JH{\rm{//AB}}\) (do \(OH{\rm{//}}AB\)).

Mà \(AB \subset \left( {SAB} \right)\) nên \(JH{\rm{//}}\left( {SAB} \right).\)

Ta có: \(JH{\rm{//}}\left( {SAB} \right);\,\,IH{\rm{//}}\left( {SAB} \right)\) và \(JH \cap IH = H\) trong \(\left( {IJH} \right).\)

\( \Rightarrow \left( {IJH} \right){\rm{//}}\left( {SAB} \right).\)

\( \Rightarrow IJ{\rm{//}}\left( {SAB} \right)\) (do \(IJ \subset \left( {IJH} \right)\)).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

\(\left( {ABCD} \right){\rm{//}}\left( {A'B'C'D'} \right).\)

\(\left( {ABB'A'} \right){\rm{//}}\left( {CDD'C'} \right).\)

\(\left( {AA'D'D} \right){\rm{//}}\left( {BB'C'C} \right).\)

\(\left( {BDD'B'} \right){\rm{//}}\left( {ACC'A'} \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP