Câu hỏi:

18/11/2025 21 Lưu

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang (\(AB{\rm{//}}CD\)). Gọi \(d\) là giao tuyến của hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SCD} \right)\). Đường thẳng \(d\) song song với đường thẳng nào dưới đây?

Đường thẳng \(AB\).

Đường thẳng \(AD\).

Đường thẳng \(AC\).

Đường thẳng \(SA\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Cho hình chóp  S . A B C D  có đáy  A B C D  là hình thang ( A B / / C D ). Gọi  d  là giao tuyến của hai mặt phẳng  ( S A B )  và  ( S C D ) . Đường thẳng  d  song song với đường thẳng nào dưới đây? (ảnh 1)

Hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SCD} \right)\) có chung điểm \(S\) và lần lượt chứa hai đường thẳng song song \(AB,\,\,CD\) nên giao tuyến \(d\) đi qua \(S\) và lần lượt song song với \(AB,\,\,CD.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Đa giác thiết diện của một lăng trụ tam giác và một mặt phẳng có nhiều nhất 5 cạnh với các cạnh thuộc các mặt của hình lăng trụ tam giác.

Câu 2

Hàm số liên tục tại \(x = - 1\).

Hàm số liên tục tại \(x = 0\).

Hàm số liên tục tại \(x = 1\).

Hàm số liên tục tại \(x = \frac{1}{2}\).

Lời giải

Đáp án đúng là: D

Xét hàm số \(f\left( x \right) = \frac{{2x - 1}}{{{x^3} - x}}.\)

Điều kiện xác định: \({x^3} - x \ne 0 \Leftrightarrow \left\{ \begin{array}{l}x \ne 0\\x \ne 1\\x \ne - 1\end{array} \right..\)

Do đó hàm số \(f\left( x \right) = \frac{{2x - 1}}{{{x^3} - x}}\) có tập xác định \(D = \mathbb{R}\backslash \left\{ { - 1;0;1} \right\}.\)

Kết luận A, B, C sai vì: Hàm số đã cho không xác định tại \(x = - 1;\,\,x = 0;\,\,x = 1\) nên không liên tục tại các điểm đó.

Kết luận D đúng vì:

Ta có: \(\mathop {\lim }\limits_{x \to \frac{1}{2}} f\left( x \right) = \mathop {\lim }\limits_{x \to \frac{1}{2}} \frac{{2x - 1}}{{{x^3} - x}} = \frac{{2.\frac{1}{2} - 1}}{{{{\left( {\frac{1}{2}} \right)}^3} - \frac{1}{2}}} = 0;\) \(f\left( {\frac{1}{2}} \right) = \frac{{2.\frac{1}{2} - 1}}{{{{\left( {\frac{1}{2}} \right)}^3} - \frac{1}{2}}} = 0.\)

\( \Rightarrow \mathop {\lim }\limits_{x \to \frac{1}{2}} f\left( x \right) = f\left( {\frac{1}{2}} \right).\)

Vậy hàm số \(f\left( x \right) = \frac{{2x - 1}}{{{x^3} - x}}\) liên tục tại \(x = \frac{1}{2}\).

Câu 3

\(y = {x^3} - x.\)

\(y = \cot x.\)

\(y = \frac{{2x - 1}}{{x - 1}}.\)

\(y = \sqrt {{x^2} - 1} .\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP