Gọi \(O\) là tâm hình bình hành \(ABCD\). Hỏi vectơ \(\overrightarrow {AO} - \overrightarrow {DO} \) bằng vectơ nào?
Quảng cáo
Trả lời:
Đáp án đúng là: B

Ta có: \(\overrightarrow {AO} - \overrightarrow {DO} = \overrightarrow {AO} + \overrightarrow {OD} = \overrightarrow {AD} = \overrightarrow {BC} \) (do \(ABCD\) là hình bình hành).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: D
Vì \(\overrightarrow a \) và \(\overrightarrow b \) là hai vectơ ngược hướng và đều khác vectơ \(\overrightarrow 0 \) nên \(\left( {\overrightarrow a ,\,\,\overrightarrow b } \right) = 180^\circ \).
Do đó, \(\overrightarrow a \cdot \overrightarrow b = \left| {\overrightarrow a } \right| \cdot \left| {\overrightarrow b } \right| \cdot \cos \left( {\overrightarrow a ,\,\overrightarrow b } \right) = \left| {\overrightarrow a } \right| \cdot \left| {\overrightarrow b } \right| \cdot \cos 180^\circ = - \left| {\overrightarrow a } \right| \cdot \left| {\overrightarrow b } \right|\).
Câu 2
Lời giải
Đáp án đúng là: D
Ta có: \(\cos 150^\circ = - \cos 30^\circ = - \frac{{\sqrt 3 }}{2}\), đây là một số thực âm (không phải số hữu tỉ do \(\sqrt 3 \) là số vô tỉ).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.