Câu hỏi:

18/11/2025 30 Lưu

(1 điểm) Trên mặt phẳng tọa độ \(Oxy\), cho \(\overrightarrow a = \left( {2 + x; - 3} \right)\)\(\overrightarrow b = \left( {1;\,\,2} \right)\). Đặt \(\overrightarrow u = 2\overrightarrow a + \overrightarrow b \). Gọi \(\overrightarrow v = \left( { - 5;\,\,8} \right)\) là vectơ ngược hướng với vectơ \(\overrightarrow u \). Tìm \(x\) biết \(\left| {\overrightarrow v } \right| = 2\left| {\overrightarrow u } \right|\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có: \(\overrightarrow u = 2\overrightarrow a + \overrightarrow b = \left( {4 + 2x + 1; - 6 + 2} \right) = \left( {2x + 5; - 4} \right) \Rightarrow \left| {\overrightarrow u } \right| = \sqrt {{{\left( {2x + 5} \right)}^2} + 16} \)

\(\left| {\overrightarrow v } \right| = \sqrt {25 + 64} = \sqrt {89} ;\left| {\overrightarrow v } \right| = 2\left| {\overrightarrow u } \right| \Leftrightarrow \sqrt {89} = 2\sqrt {{{\left( {2x + 5} \right)}^2} + 16} \)

\( \Leftrightarrow 89 = 4{\left( {2x + 5} \right)^2} + 64 \Leftrightarrow {\left( {2x + 5} \right)^2} = \frac{{25}}{4}\)

\( \Leftrightarrow \left[ \begin{array}{l}2x + 5 = \frac{5}{2}\\2x + 5 = - \frac{5}{2}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{{ - 5}}{4}\\x = \frac{{ - 15}}{4}\end{array} \right.\)

Khi \(x = \frac{{ - 5}}{4} \Rightarrow \overrightarrow u = \left( {\frac{5}{2}; - 4} \right) = \frac{{ - 1}}{2}\left( { - 5;8} \right) = \frac{{ - 1}}{2}\overrightarrow v \) (tm)

Khi \(x = \frac{{ - 15}}{4} \Rightarrow \overrightarrow v = \left( {\frac{{ - 5}}{2}; - 4} \right) = \frac{{ - 1}}{2}\left( {5;8} \right)\) (ktm)

Vậy \(x = \frac{{ - 5}}{4}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\overrightarrow {AM} = - \frac{1}{2}\overrightarrow {AB} + \frac{3}{2}\overrightarrow {AC} \); 
B. \(\overrightarrow {AM} = 2\overrightarrow {AB} + \overrightarrow {AC} \);
C. \(\overrightarrow {AM} = \overrightarrow {AB} - \overrightarrow {AC} \);                                   
D. \[\overrightarrow {AM} = \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right)\].

Lời giải

Đáp án đúng là: A

Đáp án đúng là: C (ảnh 1)

Gọi \(I\) là trung điểm của \(BC\). Khi đó \(C\) là trung điểm của \(MI\). Ta có:

\[\overrightarrow {AM} + \overrightarrow {AI} = 2\overrightarrow {AC} \Leftrightarrow \overrightarrow {AM} = - \overrightarrow {AI} + 2\overrightarrow {AC} = - \frac{1}{2}(\overrightarrow {AB} + \overrightarrow {AC} ) + 2\overrightarrow {AC} = - \frac{1}{2}\overrightarrow {AB} + \frac{3}{2}\overrightarrow {AC} \].

Câu 2

A. \(M\) là trung điểm \(AB\);                             
B. \(M\)trùng \(A\);
C. \(M\) trùng \(B\);                                             
D. \(A\) là trung điểm \(MB\).

Lời giải

Đáp án đúng là: D

Ta có: \[\overrightarrow {MA} + \overrightarrow {BA} = \overrightarrow 0 \]\( \Leftrightarrow \overrightarrow {MA} = - \overrightarrow {BA} \Leftrightarrow \overrightarrow {MA} = \overrightarrow {AB} \).

Suy ra hai vectơ \(\overrightarrow {MA} \)\(\overrightarrow {AB} \) cùng hướng và \(MA = AB\).

Do đó, \(A\) là trung điểm của \(MB\).

Câu 3

Cho \(\overrightarrow a \)\(\overrightarrow b \) là hai vectơ ngược hướng và đều khác vectơ \(\overrightarrow 0 \). Mệnh đề nào sau đây đúng? 

A. \(\overrightarrow a \cdot \overrightarrow b = \left| {\overrightarrow a } \right| \cdot \left| {\overrightarrow b } \right|\);                      
B. ab=0
C. \(\overrightarrow a \cdot \overrightarrow b = - 1\);                               
D. \(\overrightarrow a \cdot \overrightarrow b = - \left| {\overrightarrow a } \right| \cdot \left| {\overrightarrow b } \right|\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Cho ba điểm phân biệt A,B,C. Trong các khẳng định sau, khẳng định nào sai?

A. \[\overrightarrow {AB} + \overrightarrow {BC} = \overrightarrow {AC} \];                                                                         
B. \[\overrightarrow {AC} + \overrightarrow {CB} = \overrightarrow {AB} \];                                   
C. \[\overrightarrow {CA} + \overrightarrow {BC} = \overrightarrow {BA} \];                                                                         
D. \[\overrightarrow {CB} + \overrightarrow {AC} = \overrightarrow {BA} \].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Cho \(G\) là trọng tâm của tam giác \(ABC\). Với mọi điểm \(M\) ta luôn có:

A. \(\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} = \overrightarrow {MG} \); 
B. \(\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} = 2\overrightarrow {MG} \);
C. \(\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} = 3\overrightarrow {MG} \); 
D. \(\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} = 4\overrightarrow {MG} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\overrightarrow {MN} = 7\overrightarrow a \);                                 
B. \(\overrightarrow {MN} = - 5\overrightarrow a \);                                        
C. \(\overrightarrow {MN} = - 7\overrightarrow a \);                                 
D. \(\overrightarrow {MN} = - 5\overrightarrow a \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. Hình 1;                   
B. Hình 2;                        
C. Hình 3;                                 
D. Hình 4.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP