Câu hỏi:

18/11/2025 5 Lưu

(1 điểm) Bạn Nam dùng đồng hồ bấm giờ để đo thời gian một vật rơi tự do (đơn vị: giây) từ tầng năm của một tòa nhà xuống mặt đất trong 10 lần cho kết quả như sau:

0,899;   0,898;   0,895;   0,901;   0,898;   0,902;   0,910;   0,312;   0,905;   0,899.

Nam nghĩa rằng giá trị 0,312 ở lần đo thứ 8 không chính xác. Hãy kiểm tra nghi ngờ của Nam.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Nhận thấy giá trị 0,312 nhỏ hơn rất nhiều so với các giá trị khác trong mẫu số liệu đã cho, do đó để kiểm tra nghi ngờ của Nam, ta cần xác định xem 0,312 có phải giá trị bất thường của mẫu số liệu hay không.

Sắp xếp mẫu số liệu đã cho theo thứ tự không giảm ta được:

0,312;   0,895;   0,898;   0,898;   0,899;   0,899;   0,901;   0,902; 0,905;   0,910.

Vì mẫu số liệu có 10 số liệu nên trung vị hay tứ phân vị thứ hai là trung bình cộng của số ở vị trí thứ năm và thứ sáu, do đó \({Q_2} = \frac{{0,899 + 0,899}}{2} = 0,899\).

Tứ phân vị thứ nhất là trung vị của mẫu 0,213;   0,895;   0,898;   0,898;   0,899.

Do đó, \({Q_1} = 0,898\).

Tứ phân vị thứ ba là trung vị của mẫu 0,899; 0,901;   0,902; 0,905;   0,910.

Do đó, \({Q_3} = 0,902\).

Khoảng tứ phân vị của mẫu số liệu là \({\Delta _Q} = {Q_3} - {Q_1} = 0,902 - 0,898 = 0,004\).

Ta có: \({Q_1} - 1,5{\Delta _Q} = 0,898 - 1,5 \cdot 0,004 = 0,892\).

Vì 0,312 < 0,892 nên 0,312 là giá trị bất thường của mẫu số liệu. Do đó, giá trị ở lần đó thứ 8 trong thí nghiệm trên không chính xác hay nghi ngờ của Nam là đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Cho \(\overrightarrow a \)\(\overrightarrow b \) là hai vectơ ngược hướng và đều khác vectơ \(\overrightarrow 0 \). Mệnh đề nào sau đây đúng? 

A. \(\overrightarrow a \cdot \overrightarrow b = \left| {\overrightarrow a } \right| \cdot \left| {\overrightarrow b } \right|\);                      
B. ab=0
C. \(\overrightarrow a \cdot \overrightarrow b = - 1\);                               
D. \(\overrightarrow a \cdot \overrightarrow b = - \left| {\overrightarrow a } \right| \cdot \left| {\overrightarrow b } \right|\).

Lời giải

Đáp án đúng là: D

\(\overrightarrow a \)\(\overrightarrow b \) là hai vectơ ngược hướng và đều khác vectơ \(\overrightarrow 0 \) nên \(\left( {\overrightarrow a ,\,\,\overrightarrow b } \right) = 180^\circ \).

Do đó, \(\overrightarrow a \cdot \overrightarrow b = \left| {\overrightarrow a } \right| \cdot \left| {\overrightarrow b } \right| \cdot \cos \left( {\overrightarrow a ,\,\overrightarrow b } \right) = \left| {\overrightarrow a } \right| \cdot \left| {\overrightarrow b } \right| \cdot \cos 180^\circ = - \left| {\overrightarrow a } \right| \cdot \left| {\overrightarrow b } \right|\).

Câu 2

Cho hai điểm \(A\left( {2;\,2} \right)\)\(B\left( {5;\, - 2} \right)\). Tìm điểm \(M\) nằm trên tia \[Ox\] sao cho \(\widehat {AMB} = 90^\circ \).

A. \(M\left( {1;\,\,6} \right)\);                                     
B. \(M\left( {6;\,\,0} \right)\);     
C. \(M\left( {1;\,\,0} \right)\) hoặc \(M\left( {6;\,\,0} \right)\);                      
D. \(M\left( {0;\,\,1} \right)\).

Lời giải

Đáp án đúng là: C

điểm \(M\) nằm trên tia \[Ox\] nên gọi tọa độ điểm \(M\)\(M\left( {x;\,\,0} \right)\).

Khi đó, \(\overrightarrow {MA} = \left( {2 - x;\,\,2} \right),\,\,\overrightarrow {MB} = \left( {5 - x;\, - 2} \right)\).

Ta có: \(\widehat {AMB} = 90^\circ \) \( \Leftrightarrow MA \bot MB \Leftrightarrow \overrightarrow {MA} \bot \overrightarrow {MB} \Leftrightarrow \overrightarrow {MA} \cdot \overrightarrow {MB} = 0\)

\( \Leftrightarrow \left( {2 - x} \right)\left( {5 - x} \right) + 2 \cdot \left( { - 2} \right) = 0\)

\( \Leftrightarrow {x^2} - 7x + 6 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 6\\x = 1\end{array} \right.\).

Vậy \(M\left( {1;\,\,0} \right)\) hoặc \(M\left( {6;\,\,0} \right)\).

Câu 3

A. 13,738;                   
B. 13,7;                           
C. 13,8;                            
D. 13,74.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\left[ { - 2;\,\, - 3} \right]\);                         
B. \(\left( { - 2;\,\,5} \right)\);          
C. \(\left( { - 2;\,\,5} \right]\);                      
D. \(\left[ { - 2;\,\,5} \right]\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Người ta dự định dùng hai nguyên liệu là mía và củ cải đường để chiết xuất ít nhất 140 kg đường kính và 9 kg đường cát. Từ mỗi tấn mía có thể chiết xuất được 20 kg đường kính và 0,6 kg đường cát. Từ mỗi tấn củ cải đường có thể chiết xuất được 10 kg đường kính và 1,5 kg đường cát. Gọi số tấn mía cần dùng là \(x\) và số tấn củ cải đường cần dùng là \(y\). Biết rằng cơ sở cung cấp nguyên liệu chỉ có thể cung cấp không quá 10 tấn mía và không quá 9 tấn củ cải đường. Một hệ điều kiện giữa \(x\)\(y\) thỏa mãn yêu cầu bài toán là

A. \(\left\{ \begin{array}{l}0 \le x \le 10\\0 \le y \le 9\\20x + 10y \le 140\\0,6x + 1,5y \le 9\end{array} \right.\);                                                   
B. \(\left\{ \begin{array}{l}0 \le x \le 10\\0 \le y \le 9\\20x + 10y > 140\\0,6x + 1,5y > 9\end{array} \right.\);         
C. \(\left\{ \begin{array}{l}x > 0\\y > 0\\20x + 10y \ge 140\\0,6x + 1,5y \ge 9\end{array} \right.\);                                                              
D. \(\left\{ \begin{array}{l}0 \le x \le 10\\0 \le y \le 9\\20x + 10y \ge 140\\0,6x + 1,5y \ge 9\end{array} \right.\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. một số hữu tỉ âm;                                           
B. một số hữu tỉ dương;                      
C. một số thực dương;                                         
D. một số thực âm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \({\rm{sin}}\alpha \)\(\cot \alpha \) cùng dấu;       
B. Tích \({\rm{sin}}\alpha \cdot {\rm{cot}}\alpha \) mang dấu âm;
C. Tích \({\rm{sin}}\alpha \cdot {\rm{cos}}\alpha \) mang dấu dương;                                                          
D. \({\rm{sin}}\alpha \)\(\tan \alpha \) cùng dấu.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP