II. Tự luận (4 điểm)
(1 điểm) Một tháp viễn thông cao 48 m được dựng thẳng đứng trên một sườn dốc \(25^\circ \) so với phương ngang. Từ đỉnh tháp, người ta neo một sợi dây cáp xuống một điểm trên sườn dốc cách chân tháp 35 m như hình dưới. Tính chiều dài của sợi dây cáp đó.

II. Tự luận (4 điểm)
(1 điểm) Một tháp viễn thông cao 48 m được dựng thẳng đứng trên một sườn dốc \(25^\circ \) so với phương ngang. Từ đỉnh tháp, người ta neo một sợi dây cáp xuống một điểm trên sườn dốc cách chân tháp 35 m như hình dưới. Tính chiều dài của sợi dây cáp đó.

Quảng cáo
Trả lời:
Gọi \(A,\,B,\,C,M,\,H\) lần lượt là đỉnh tháp viễn thông, điểm trên sườn dốc cách chân tháp 35 m, chân tháp viễn thông, chân sườn dốc, hình chiếu của điểm A lên phương ngang như hình vẽ sau

Khi đó ta có: \(AC = 48\,\)m, \(BC = 35\)m, \(\widehat {CMH} = 25^\circ \), \(\widehat {CHM} = 90^\circ \).
Suy ra \(\widehat {MCH} = 90^\circ - 25^\circ = 65^\circ \).
Ta có: \(\widehat {ACB} = \widehat {MCH} = 65^\circ \) (2 góc đối đỉnh).
Áp dụng định lí côsin trong tam giác \(ABC\) ta có
\(A{B^2} = A{C^2} + B{C^2} - 2AC \cdot BC \cdot \cos \widehat {ACB}\)\( = {48^2} + {35^2} - 2 \cdot 48 \cdot 35 \cdot \cos 65^\circ \approx 2\,\,109\)
Suy ra \(AB \approx 46\) (m).
Vậy chiều dài của sợi dây cáp đó khoảng 46 m.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Ta có: \[AC \bot DB \Leftrightarrow \overrightarrow {AC} \cdot \overrightarrow {BD} = 0\]
\[\overrightarrow {AC} \cdot \overrightarrow {BD} = \left( {\overrightarrow {AB} + \overrightarrow {BC} } \right)\left( {\overrightarrow {AD} - \overrightarrow {AB} } \right)\]
\[ = \overrightarrow {AB} \cdot \overrightarrow {AD} - A{B^2} + \overrightarrow {BC} \cdot \overrightarrow {AD} - \overrightarrow {BC} \cdot \overrightarrow {AB} \]
Ta lại có: \[\overrightarrow {AB} \cdot \overrightarrow {AD} = \overrightarrow {BC} \cdot \overrightarrow {AB} = 0\]
Và \[A{B^2} = {h^2},\overrightarrow {BC} \cdot \overrightarrow {AD} = BC \cdot AD = ab\] .
Do đó, \[\overrightarrow {AC} \cdot \overrightarrow {BD} = 0 - {h^2} + ab - 0 = ab - {h^2}\].
Vậy \[\overrightarrow {AC} \bot \overrightarrow {BD} \Leftrightarrow ab - {h^2} = 0\].
b) Vì \(I\) là trung điểm \(CD\) nên \[\overrightarrow {AI} = \frac{1}{2}\left( {\overrightarrow {AC} + \overrightarrow {AD} } \right)\] và \[\overrightarrow {BI} = \frac{1}{2}\left( {\overrightarrow {BC} + \overrightarrow {BD} } \right)\].
Khi đó ta có: \[\widehat {AIB} = 90^\circ \Leftrightarrow \overrightarrow {AI} \cdot \overrightarrow {BI} = 0 \Leftrightarrow \left( {\overrightarrow {AC} + \overrightarrow {AD} } \right)\left( {\overrightarrow {BC} + \overrightarrow {BD} } \right) = 0\]
\[ \Leftrightarrow \overrightarrow {AC} \cdot \overrightarrow {BC} + \overrightarrow {AC} \cdot \overrightarrow {BD} + \overrightarrow {AD} \cdot \overrightarrow {BC} + \overrightarrow {AD} \cdot \overrightarrow {BD} = 0\]
Mà \[\overrightarrow {AC} \cdot \overrightarrow {BC} = \left( {\overrightarrow {AB} + \overrightarrow {BC} } \right)\overrightarrow {BC} = \overrightarrow {AB} \cdot \overrightarrow {BC} + {\overrightarrow {BC} ^2} = 0 + B{C^2} = {b^2}\]; \[\overrightarrow {AC} \cdot \overrightarrow {BD} = ab - {h^2}\];
\[\overrightarrow {AD} \cdot \overrightarrow {BC} = AD \cdot BC = ab\]; \[\overrightarrow {AD} \cdot \overrightarrow {BD} = \overrightarrow {AD} \left( {\overrightarrow {BA} + \overrightarrow {AD} } \right) = \overrightarrow {AD} \cdot \overrightarrow {BA} + {\overrightarrow {AD} ^2} = 0 + A{D^2} = {a^2}\].
Do đó, ta có: \[\widehat {AIB} = 90^\circ \Leftrightarrow {a^2} + {b^2} - {h^2} + 2ab = 0 \Leftrightarrow a + b = h.\]
Câu 2
Lời giải
Đáp án đúng là: C
Ta có \(A \cap B = \left[ { - 4;\,1} \right) \cup \left[ { - 2;\,\,3} \right] = \left[ { - 4;\,\,3} \right]\).
Suy ra \({C_\mathbb{R}}\left( {A \cup B} \right) = \mathbb{R}\backslash \left( {A \cup B} \right) = \left( { - \infty ; - 4} \right) \cup \left( {3; + \infty } \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.