Hệ bất phương trình nào sau đây là hệ bất phương trình bậc nhất hai ẩn?
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: A
+) \[\left\{ \begin{array}{l}x + y > x - 3\\x + y < 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y > - 3\\x + y < 4\end{array} \right.\]là hệ bất phương trình bậc nhất hai ẩn.
+) \(\left\{ \begin{array}{l}{x^2} - y \ge 1\\2x - 4y < 2x - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x^2} - y \ge 1\\ - 4y < - 1\end{array} \right.\) không là hệ bất phương trình bậc nhất hai ẩn vì bất phương trình \({x^2} - y \ge 1\) có chứa \({x^2}\) nên không là bất phương trình bậc nhất hai ẩn.
+) \[\left\{ \begin{array}{l}x + y + z > 0\\2y - 4 < 0\end{array} \right.\] không là hệ bất phương trình bậc nhất hai ẩn vì có ba ẩn là \(x,\,\,y,\,\,z\).
+) \(\left\{ \begin{array}{l}{x^2} \ge 0\\x - 3{y^2} + 4 < 0\end{array} \right.\) không là hệ bất phương trình bậc nhất hai ẩn vì bất phương trình \({x^2} \ge 0\) có chứa \({x^2}\) và bất phương trình \(x - 3{y^2} + 4 < 0\)có chứa \({y^2}\) đều không là các bất phương trình bậc nhất hai ẩn.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Hướng dẫn giải
Đáp án đúng là: A

Theo giả thiết: \(\widehat {BAD} = 60^\circ \Rightarrow \widehat {ABC} = 120^\circ \).
\(\overrightarrow {BA} .\overrightarrow {BC} = \left| {\overrightarrow {BA} } \right|.\left| {\overrightarrow {BC} } \right|.\cos \left( {\overrightarrow {BA} ;\overrightarrow {BC} } \right) = AB.BC.\cos \widehat {ABC} = 2.1.\cos 120^\circ = - 1\).
Lời giải
Hướng dẫn giải
![Cho tam giác \[ABC\] đều có cạnh \(a\), điểm \ (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/11/39-1763537040.png)
a) Do \(M\) là trung điểm \(BC\) nên \(\overrightarrow {AM} = \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right)\) và \(AM\) là trung tuyến của tam giác \[ABC\].
Hơn nữa, \(G\) là trọng tâm của tam giác \[ABC\] nên \(\overrightarrow {AG} = \frac{2}{3}\overrightarrow {AM} \).
Do đó, \(\overrightarrow {AG} = \frac{2}{3}\overrightarrow {AM} = \frac{2}{3} \cdot \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right) = \frac{1}{3}\overrightarrow {AB} + \frac{1}{3}\overrightarrow {AC} \).
b) Ta có: \(\overrightarrow {AG} .\overrightarrow {AB} = \left( {\frac{1}{3}\overrightarrow {AB} + \frac{1}{3}\overrightarrow {AC} } \right).\overrightarrow {AB} = \frac{1}{3}{\overrightarrow {AB} ^2} + \frac{1}{3}\overrightarrow {AC} .\overrightarrow {AB} = \frac{1}{3}.{a^2} + \frac{1}{3}.a.a.{\rm{cos}}60^\circ \)
\( = \frac{1}{2}{a^2}\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.