(1,0 điểm) Cho tam giác \[ABC\] vuông tại \[A\]. Điểm \[M\] bất kỳ nằm trong tam giác có hình chiếu xuống \[BC,\,AC,\,AB\] theo thứ tự là \[D,\,E,\,F\]. Tìm tập hợp điểm \[M\] biết rằng \[\overrightarrow {MD} + \overrightarrow {ME} + \overrightarrow {MF} \] cùng phương với \[\overrightarrow {BC} \].
(1,0 điểm) Cho tam giác \[ABC\] vuông tại \[A\]. Điểm \[M\] bất kỳ nằm trong tam giác có hình chiếu xuống \[BC,\,AC,\,AB\] theo thứ tự là \[D,\,E,\,F\]. Tìm tập hợp điểm \[M\] biết rằng \[\overrightarrow {MD} + \overrightarrow {ME} + \overrightarrow {MF} \] cùng phương với \[\overrightarrow {BC} \].
Quảng cáo
Trả lời:
Hướng dẫn giải
![Cho tam giác \[ABC\] (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/11/7-1763548477.png)
Ta có: \[\overrightarrow {MD} + \overrightarrow {ME} + \overrightarrow {MF} = \overrightarrow {MD} + \overrightarrow {MA} \].
Gọi \[I\] là trung điểm của \[AD\]\[ \Rightarrow \overrightarrow {MD} + \overrightarrow {MA} = 2\overrightarrow {MI} \].
Vậy nên \[\overrightarrow {MD} + \overrightarrow {ME} + \overrightarrow {MF} = 2\overrightarrow {MI} \].
Để \[\overrightarrow {MD} + \overrightarrow {ME} + \overrightarrow {MF} \] cùng phương với \[\overrightarrow {BC} \] thì \[\overrightarrow {MI} \] cùng phương \[\overrightarrow {BC} \].
Suy ra \(MI\parallel BC\), mà \(I\) là trung điểm của \(AD\) nên \(MI\)là đường trung bình của tam giác \(ABC\).
Do đó tập hợp các điểm \[M\] là đoạn \[PQ\] (với \(PQ\) là đường trung bình của tam giác \(ABC\), \(P \in AB,Q \in AC\)).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Tam giác \[ABC\] là tam giác đều có đường cao \[AH\] nên \[AH\] cũng là đường phân giác của tam giác \[ABC\].
\[ \Rightarrow \widehat {BAH} = \widehat {HAC} = 30^\circ \Rightarrow \left\{ \begin{array}{l}\sin \widehat {BAH} = \sin \widehat {HAC} = \frac{1}{2}\\\cos \widehat {BAH} = \frac{{\sqrt 3 }}{2}\end{array} \right.\]
Vì \[\widehat {ABC} = 60^\circ \Rightarrow \sin \widehat {ABC} = \frac{{\sqrt 3 }}{2}\].
Do đó B đúng.
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Trong mặt phẳng tọa độ \[Oxy\], đồ thị hàm số bậc hai \[y = a{x^2} + bx + c\,(a \ne 0)\] là một parabol \[(P)\]:
Có đỉnh \[S\] với hoành độ \[{x_S} = - \frac{b}{{2a}}\], tung độ \[{y_S} = - \frac{\Delta }{{4a}}\].
Do đó C đúng.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.