II. TỰ LUẬN (3 ĐIỂM)
(1,0 điểm) Một doanh nghiệp tư nhân A chuyên kinh doanh xe gắn máy các loại. Hiện nay doanh nghiệp đang tập trung chiến lược vào kinh doanh xe hon đa Future Fi với chi phí mua một chiếc là \(27\) triệu đồng và bán ra với giá là \(31\) triệu đồng. Với giá bán này thì số lượng xe mà khách hàng sẽ mua trong một năm là \(600\) chiếc. Nhằm mục tiêu đẩy mạnh hơn nữa lượng tiêu thụ dòng xe đang ăn khách này, doanh nghiệp dự định giảm giá bán và ước tính rằng nếu giảm \(1\) triệu đồng mỗi chiếc xe thì số lượng xe bán ra trong một năm sẽ tăng thêm \[200\] chiếc. Vậy doanh nghiệp phải bán với giá bao nhiêu sau khi giảm giá để lợi nhuận thu được là cao nhất.
II. TỰ LUẬN (3 ĐIỂM)
(1,0 điểm) Một doanh nghiệp tư nhân A chuyên kinh doanh xe gắn máy các loại. Hiện nay doanh nghiệp đang tập trung chiến lược vào kinh doanh xe hon đa Future Fi với chi phí mua một chiếc là \(27\) triệu đồng và bán ra với giá là \(31\) triệu đồng. Với giá bán này thì số lượng xe mà khách hàng sẽ mua trong một năm là \(600\) chiếc. Nhằm mục tiêu đẩy mạnh hơn nữa lượng tiêu thụ dòng xe đang ăn khách này, doanh nghiệp dự định giảm giá bán và ước tính rằng nếu giảm \(1\) triệu đồng mỗi chiếc xe thì số lượng xe bán ra trong một năm sẽ tăng thêm \[200\] chiếc. Vậy doanh nghiệp phải bán với giá bao nhiêu sau khi giảm giá để lợi nhuận thu được là cao nhất.
Quảng cáo
Trả lời:
Hướng dẫn giải
Gọi số tiền mà doanh nghiệp A dự định giảm giá là \(x\) ( triệu đồng) \(\left( {0 \le x \le 4} \right)\).
Tiền lãi khi bán được một xe là: \(31 - x - 27 = 4 - x\)(triệu đồng).
Số lượng xe bán được khi đã giảm giá là: \(600 + 200x\) (xe).
Lợi nhuận cửa hàng thu được là: \(\left( {600 + 200x} \right)\left( {4 - x} \right) = - 200{x^2} + 200x + 2\,\,400\)(triệu đồng).
Xét hàm số bậc hai \(y = - 200{x^2} + 200x + 2\,\,400\), có:
Đỉnh \(I\) có tọa độ: \({x_I} = - \frac{b}{{2a}} = - \frac{{200}}{{2.\left( { - 200} \right)}} = \frac{1}{2}\); \({y_I} = - \frac{\Delta }{{4a}} = - \frac{{1\,\,960\,\,000}}{{4.\left( { - 200} \right)}} = 2\,\,450\).
Hay \(I\left( {\frac{1}{2};2\,\,450} \right)\)
Ta có bảng biến thiên:

Dựa vào bảng biến thiên ta thấy, hàm số đạt giá trị lớn nhất là \(2\,450\) khi x = \(\frac{1}{2}\).
Vậy doanh nghiệp phải bán với giá \(30,5\) triệu đồng để lợi nhuận thu được là cao nhất.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Theo định nghĩa hai vectơ \[\overrightarrow a \] và \[\overrightarrow b \] được gọi là bằng nhau nếu chúng có cùng hướng và cùng độ dài.
Câu 2
Một cửa hàng bán quần áo thời trang đang mở một chương trình khuyến mãi trong vòng 4 ngày, biết rằng số sản phẩm bán được mỗi ngày đều tăng khoảng \[30\% \] so với ngày trước đó. Nhân viên bán hàng đã thống kê số sản phẩm bán được mỗi ngày như bảng dưới đây:
Chọn phát biểu đúng:
|
Ngày |
1 |
2 |
3 |
4 |
|
Số sản phẩm bán được |
50 |
66 |
93 |
115 |
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Theo bảng số liệu đã cho ta thống kê được bảng sau:
|
Ngày |
2 |
3 |
4 |
|
Tỉ lệ |
32% |
40,9% |
23,7% |
Ta thấy tỉ lệ sản phẩm bán ra ở ngày thứ ba tăng \[40,9\% \] khác xa so với \[30\% \].
Do đó trong bảng số liệu đã cho, số sản phẩm bán ra của ngày thứ ba là không chính xác. Vậy nên đáp án C đúng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.