Câu hỏi:

19/11/2025 7 Lưu

Tập nghiệm \[S\] của bất phương trình \[2x - 1 \ge \frac{{2x}}{5} + 3y\] được biểu diễn bởi hình vẽ nào đưới đây?

A. Hướng dẫn giải  Đáp án đúng là: C (ảnh 2)                          
B. Hướng dẫn giải  Đáp án đúng là: C (ảnh 3)
C. Hướng dẫn giải  Đáp án đúng là: C (ảnh 4)                        
D. Hướng dẫn giải  Đáp án đúng là: C (ảnh 5)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: A

Ta có: \[2x - 3 \ge \frac{{7x}}{5} + 3y \Leftrightarrow 10x - 15 \ge 7x + 15y \Leftrightarrow 3x - 15y \ge 15 \Leftrightarrow x - 5y \ge 5\].

+) Vẽ đường thẳng \(d:x - 5y = 5\)

+) Lấy điểm \(O\left( {0;\,0} \right) \notin d\)\(0 - 5.0 = 0 < 5\)nên điểm \(O\) không thuộc miền nghiệm của bất phương trình đã cho.

Vậy miền nghiệm của bất phương trình là nửa mặt phẳng có bờ là đường thẳng \(d\) và không chứa điểm \(O\) (kể cả đường thẳng \(d\)):

Hướng dẫn giải  Đáp án đúng là: C (ảnh 1)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

a) Khi \[t = 3\] giây thì \[h\left( 3 \right) = - {\left( {3 - 2} \right)^2} + 16 = 15\left( {km} \right)\].

Vậy độ cao của viên đạn khi bắn được \(3\) giây là \(15\,\,km\).

b) Viên đạn đạt độ cao \[12km\] khi \[h\left( t \right) = 12 \Leftrightarrow - {\left( {t - 2} \right)^2} + 16 = 12 \Leftrightarrow \left[ \begin{array}{l}t = 4\left( {tmdk} \right)\\t = 0\end{array} \right.\]

Vậy khi bắn được \[4\] giây thì viên đạn đạt độ cao \[12km\].

c) Viên đạn chạm mặt đất khi độ cao đạt \[0\,\,km\] nên ta có:

\[ - {\left( {t - 2} \right)^2} + 16 = 0 \Leftrightarrow {\left( {t - 2} \right)^2} = 16 \Leftrightarrow \left[ \begin{array}{l}t = 6\left( {tmdk} \right)\\t = - 2\end{array} \right.\].

Vậy sau khi bắn được \(6\) giây viên đạn chạm mặt đất.

Câu 2

A.​​ Hàm số​​ đồng biến trên khoảng​​ \[\left( { - \infty ;\,0} \right)\];
B.​​ Hàm số​​ đồng biến trên khoảng​​ \[\left( {0;\, + \infty } \right)\];
C.​​ Hàm số​​ đồng biến​​ trên khoảng​​ \[\left( { - \infty ;\, + \infty } \right)\];
D.​​ Hàm số​​ đồng biến tại gốc tọa độ​​ \[O\].

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Quan sát đồ thị hàm số ta thấy hàm số đồng biến trên \[\mathbb{R}\]. Do đó các đáp án A, B, C đúng.

Vì không có khái niệm hàm số đồng biến tại một điểm nên đáp án D sai.

Câu 3

A. \[2\overrightarrow {AG} = 3\overrightarrow {AI} \];                                              
B. \[3\overrightarrow {AG} = 2\overrightarrow {AI} \];
C. \[\overrightarrow {AB} + \overrightarrow {AC} = \frac{3}{2}\overrightarrow {AI} \];                                  
D. \[\overrightarrow {AB} + \overrightarrow {AC} = 2\overrightarrow {GI} \].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[\overrightarrow {MA} = \frac{1}{3}\overrightarrow {MB} \];                                                
B. \[\overrightarrow {AM} = \frac{1}{4}\overrightarrow {AB} \];
C. \[\overrightarrow {BM} = \frac{3}{4}\overrightarrow {BA} \];                                                
D. \[\overrightarrow {MB} = - 3\overrightarrow {MA} \].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP