Câu hỏi:

20/11/2025 50 Lưu

Cho hệ bất phương trình \[\left\{ \begin{array}{l}x + 3y - 2 \ge 0\\2x + y + 1 \le 0\end{array} \right.\]. Trong các điểm sau, điểm nào thuộc miền nghiệm của hệ bất phương trình?

A. \[M\left( {0;\,1} \right)\];                           
B. \[N\left( { - 1;\,1} \right)\];           
C. \[P\left( {1;\,3} \right)\];                      
D. \[Q\left( { - 1;\,0} \right)\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: B

+) Thay \[x = 0\]\[y = 1\] vào từng bất phương trình của hệ đã cho ta được:

\[0 + 3.1--2 = 1 \ge 0\] là một mệnh đề đúng.

\[2.0 + 1 + 1 = 2 \le 0\] là một mệnh đề sai.

Do đó điểm \[M\left( {0;\,1} \right)\] không thuộc nghiệm của hệ bất phương trình đã cho.

+) Tương tự, thay \[x = - 1\]\[y = 1\] ta được:

\[ - 1 + 3.1--2 = 0 \ge 0\]là mệnh đề đúng.

\[2.\left( { - 1} \right) + 1 + 1 = 0 \le 0\] là mệnh đề đúng.

Điểm \[N\left( { - 1;\,1} \right)\] là nghiệm của hệ bất phương trình đã cho.

+) Thay \[x = 1\]\[y = 3\] ta được:

\[1 + 3.3--2 = 8 \ge 0\] là mệnh đề đúng.

\[2.1 + 3 + 1 = 6 \le 0\] là mệnh đề sai.

Điểm \[P\left( {1;\,3} \right)\] không là nghiệm của hệ bất phương trình đã cho.

+) Thay \[x = - 1\]\[y = 0\] ta được:

\[ - 1 + 3.0--{\rm{2}} = - 3 \ge 0\] là mệnh đề sai.

\[2.\left( { - 1} \right) + 0 + 1 = - 1 \le 0\] là mệnh đề đúng.

Điểm \[Q\left( { - 1;\,0} \right)\] không thuộc nghiệm của hệ bất phương trình đã cho.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\overrightarrow {IC} = - 2\overrightarrow {AB} + \overrightarrow {AC} \);                                 
B. \(\overrightarrow {IC} = 2\overrightarrow {AB} + \overrightarrow {AC} \);
C. \(\overrightarrow {IC} = - \frac{2}{3}\overrightarrow {AB} + \overrightarrow {AC} \);                                                                         
D. \(\overrightarrow {IC} = \frac{2}{3}\overrightarrow {AB} + \overrightarrow {AC} \).

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Ta có \[\overrightarrow {IA} = - 2\overrightarrow {IB} \]\[ \Rightarrow \overrightarrow {IA} = - \frac{2}{3}\overrightarrow {AB} \].

Vậy \[\overrightarrow {IC} = \overrightarrow {IA} + \overrightarrow {AC} = - \frac{2}{3}\overrightarrow {AB} + \overrightarrow {AC} \].

Câu 2

A. \(\overrightarrow {OA} .\overrightarrow {OB} = 0\);                                                                           
B. \(\overrightarrow {AB} .\overrightarrow {AC} = \overrightarrow {AC} .\overrightarrow {AD} \);                                                                 
C.  \(\overrightarrow {OA} .\overrightarrow {OC} = \frac{1}{2}\overrightarrow {OA} .\overrightarrow {AC} \);                                 
D.  \(\overrightarrow {AB} .\overrightarrow {AC} = \overrightarrow {AB} .\overrightarrow {CD} \).

Lời giải

Hướng dẫn giải

Đáp án đúng là D

+) Vì ABCD là hình vuông nên AC BD hay OA OB nên \(\overrightarrow {OA} .\overrightarrow {OB} = 0\). Do đó A đúng.

+) Ta có: \(\overrightarrow {AB} .\overrightarrow {AC} = AB.AC.\cos \left( {\overrightarrow {AB} .\overrightarrow {AC} } \right) = AB.AC.\cos \widehat {BAC}\)

\(\overrightarrow {AC} .\overrightarrow {AD} = AC.AD.cos\left( {\overrightarrow {AC} ,\overrightarrow {AD} } \right) = AC.AD.cos\widehat {DAC}\)

\(\widehat {BAC} = \widehat {DAC}\)(tính chất hình vuông) nên \(\overrightarrow {AB} .\overrightarrow {AC} = \overrightarrow {AC} .\overrightarrow {AD} \). Do đó B đúng.

+) Ta có: \(\overrightarrow {OA} .\overrightarrow {OC} = OA.OC.cos\left( {\overrightarrow {OA} ,\overrightarrow {OC} } \right) = OA.\frac{1}{2}AC.cos\left( {\overrightarrow {OA} ,\overrightarrow {AC} } \right) = \frac{1}{2}\overrightarrow {OA} .\overrightarrow {AC} \). Do đó C đúng.

+) \(\overrightarrow {AB} .\overrightarrow {AC} = AB.AC.c{\rm{os}}\left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right) \ne AB.CD.c{\rm{os}}\left( {\overrightarrow {AB} ,\overrightarrow {CD} } \right) = \overrightarrow {AB} .\overrightarrow {CD} \). Do đó D sai.

Câu 3

A. \(AB = a,AC = a\sqrt 2 \);                                
B. \(AB = a\sqrt 2 ,AC = a\sqrt 2 \);
C. \(AB = a,AC = a\);                                             
D. \(AB = a\sqrt 2 ,AC = a\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(180\);                                                               
B. \(220\);                        
C. Cả A và B đều đúng;                                          
D. Cả A và B đều sai.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. tồn tại số thực \(k\) dương thỏa mãn \(\overrightarrow {AB} = k\overrightarrow {AC} \);
B. tồn tại số thực \(k\) âm thỏa mãn \(\overrightarrow {AB} = k\overrightarrow {AC} \);
C. tồn tại số thực \(k\) thỏa mãn \(\overrightarrow {AB} = k\overrightarrow {AC} \);
D. tât cả các đáp án trên đều sai.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP