Câu hỏi:

20/11/2025 32 Lưu

Cho tam giác \(ABC\)\(a = 3,b = 2\sqrt 2 ,c = 1\). \(M\) là điểm trên cạnh \(BC\) sao cho \(BM = 1\). Độ dài đoạn thẳng \(AM\) bằng

A. \(\frac{1}{{\sqrt 3 }}\);                              
B. \(\frac{{2\sqrt 3 }}{3}\);                                 
C. \(\sqrt 2 \);                                 
D. \(\frac{{\sqrt {15} }}{3}\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: B

Hướng dẫn giải  Đáp án đúng là: B (ảnh 1)

Áp dụng hệ quả của định lí cosin trong tam giác \(ABC\), ta được:\[{\rm{cos}}B = \frac{{{a^2} + {c^2} - {b^2}}}{{2ac}} = \frac{{{3^2} + {1^2} - {{\left( {2\sqrt 2 } \right)}^2}}}{{2.3.1}} = \frac{1}{3}\].

Áp dụng định lí cosin trong tam giác \(ABM\), ta được:

\(A{M^2} = A{B^2} + B{M^2} - 2.AB.BM.{\rm{cos}}B\)

\( = {1^2} + {1^2} - 2.1.1.\frac{1}{3} = \frac{4}{3}\)

\( \Leftrightarrow AM = \frac{{2\sqrt 3 }}{3}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\overrightarrow {GA} + 2\overrightarrow {GM} = \overrightarrow 0 \);                                             
B. \(2\overrightarrow {AG} + 3\overrightarrow {GM} = \overrightarrow 0 \);                                              
C. \(3\overrightarrow {AG} + 2\overrightarrow {AM} = \overrightarrow 0 \);                                             
D. \(3\overrightarrow {GM} + \overrightarrow {AM} = \overrightarrow 0 \).

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Xét tam giác \[ABC\] có:

\(\overrightarrow {AG} = \frac{2}{3}\overrightarrow {AM} \Leftrightarrow 3\overrightarrow {AG} - 2\overrightarrow {AM} = \overrightarrow 0 \). Do đó C sai.

\(\overrightarrow {AG} = 2\overrightarrow {GM} \Leftrightarrow \overrightarrow {GA} + 2\overrightarrow {GM} = \overrightarrow 0 \). Do đó A đúng và B sai.

\(\overrightarrow {GM} = \frac{1}{3}\overrightarrow {AM} \Leftrightarrow 3\overrightarrow {GM} - \overrightarrow {AM} = \overrightarrow 0 \). Do đó D sai.

Lời giải

Hướng dẫn giải

Gọi hàm quỹ đạo parabol của quả bóng là \(h\left( t \right) = a{t^2} + bt + c\left( {a \ne 0} \right)\).

Quả bóng được đá lên từ độ cao \(1,2m\) nên \(t = 0\), ta có điểm \(\left( {0;\,\,1,2} \right)\), thay \(t = 0\)\(h = 1,2\) vào hàm số trên ta được: \(c = 1,2\).

\( \Rightarrow h\left( t \right) = a{t^2} + bt + 1,2\) \(\left( 1 \right)\)

Tại \(t = 1\) thì \(h = 8,5\) khi đó \(\left( 1 \right) \Leftrightarrow a + b + 1,2 = 8,5 \Leftrightarrow a + b = 7,3\) \(\left( 2 \right)\).

Tại \(t = 2\) thì \(h = 6\) khi đó \(\left( 1 \right) \Leftrightarrow 4a + 2b + 1,2 = 6 \Leftrightarrow 4a + 2b = 4,8 \Leftrightarrow 2a + b = 2,4\) \(\left( 3 \right)\).

Từ \(\left( 2 \right)\)\(\left( 3 \right)\) ta có hệ phương trình: \(\left\{ \begin{array}{l}a + b = 7,3\\2a + b = 2,4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = - 4,9\\b = 12,2\end{array} \right.\)(thỏa mãn điều kiện).

Do đó hàm số cần tìm là \(h\left( t \right) = - 4,9{t^2} + 12,2t + 1,2\).

Quả bóng chạm đất nghĩa là độ cao bằng \(0\) khi đó \(h = 0\), thay vào hàm số trên ta được:

\( - 4,9{t^2} + 12,2t + 1,2 = 0 \Leftrightarrow \left[ \begin{array}{l}t \approx 2,58\\t \approx - 0,09\end{array} \right.\).

\(t > 0\) nên \(t \approx 2,58\) thỏa mãn.

Vậy sau khoảng \(2,58\) giây thì quả bóng chạm đất.

Câu 3

A. \(0\);                       
B. \(5\);                        
C. \(1\);                            
D. \(2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\overrightarrow {AC} \);                      
B. \(5\overrightarrow {AC} \);                         
C. \(1\);                            
D. \(0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(3a\);                     
B. \(\left( {2 + \sqrt 2 } \right)a\);                    
C. \(a\sqrt 2 \);           
D. \(2\sqrt 2 a\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(3\overrightarrow {IM} + 4\overrightarrow {IN} + \overrightarrow {IP} = \overrightarrow 0 \);                                                             
B. \(\overrightarrow {IM} + 3\overrightarrow {IN} + 4\overrightarrow {IP} = \overrightarrow 0 \);
C. \(4\overrightarrow {IM} + 3\overrightarrow {IN} + \overrightarrow {IP} = \overrightarrow 0 \); 
D. \(4\overrightarrow {IM} + \overrightarrow {IN} + 3\overrightarrow {IP} = \overrightarrow 0 \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\overrightarrow {OD} \);                      
B. \(\overrightarrow {OB} \);                           
C. \(\overrightarrow {AD} \);                           
D. \(\overrightarrow {OC} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP