Tìm giá trị thực của tham số \(m \ne 0\) để hàm số \(y = m{x^2} - 2mx - 3m - 2\) có giá trị nhỏ nhất bằng \( - 10\) trên \(\mathbb{R}\).
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: B
Hàm số \(y = m{x^2} - 2mx - 3m - 2\) có \(m \ne 0\) là hàm số bậc hai.
Tọa độ đỉnh: \(x = - \frac{b}{{2a}} = \frac{{2m}}{{2m}} = 1\), \(y = m{.1^2} - 2m.1 - 3m - 2 = - 4m - 2\).
TH1: Nếu \(m > 0\) thì hàm số có giá trị nhỏ nhất bằng \( - 10\) trên \(\mathbb{R}\) thì \( - 4m - 2 = - 10 \Leftrightarrow m = 2\) (thỏa mãn điều kiện).
TH2: Nếu \(m < 0\) thì hàm số có giá trị lớn nhất trên \(\mathbb{R}\) và không có giá trị nhỏ nhất trên \(\mathbb{R}\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Xét tam giác \[ABC\] có:
\(\overrightarrow {AG} = \frac{2}{3}\overrightarrow {AM} \Leftrightarrow 3\overrightarrow {AG} - 2\overrightarrow {AM} = \overrightarrow 0 \). Do đó C sai.
\(\overrightarrow {AG} = 2\overrightarrow {GM} \Leftrightarrow \overrightarrow {GA} + 2\overrightarrow {GM} = \overrightarrow 0 \). Do đó A đúng và B sai.
\(\overrightarrow {GM} = \frac{1}{3}\overrightarrow {AM} \Leftrightarrow 3\overrightarrow {GM} - \overrightarrow {AM} = \overrightarrow 0 \). Do đó D sai.
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: A

Chiều dài của dây cáp là đoạn \[AD\].
Theo bài ra ta có: \[CD = 20\,m\], \[AB = 72\,\,m\], \(\widehat {CAB} = 17^\circ \), \(\widehat {ABD} = 90^\circ \).
\[\widehat {ACB} = 180^\circ - \widehat {ACB} - \widehat {ACD} = {\rm{ }}180^\circ - 17^\circ - 90^\circ {\rm{ }} = 73^\circ \](tổng ba góc một tam giác bằng 180°).
Tam giác \[ABC\] vuông tại \[B\] , có :
\(AC = \frac{{AB}}{{\cos \widehat {CAB}}} = \frac{{72}}{{\cos 17^\circ }} \approx 75,3\,\,m\)
Áp dụng định lí cosin trong tam giác \[ACD\], ta có:
\[AD = 83,4\,\,m\]
Vậy chiều dài của dây cáp là \[83,4\,\,m\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.