Câu hỏi:

20/11/2025 27 Lưu

Tìm mệnh đề đúng trong các mệnh đề sau.

A.

Hai đường thẳng có một điểm chung thì chúng có vô số điểm chung khác.

B.

Hai đường thẳng song song khi và chỉ khi chúng không có điểm chung.

C.

Hai đường thẳng song song khi và chỉ khi chúng không đồng phẳng.

D.

Hai đường thẳng chéo nhau khi và chỉ khi chúng không đồng phẳng.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

+) A sai. Vì trong trường hợp 2 đường thẳng cắt nhau thì chúng chỉ có 1 điểm chung.

+) B và C sai. Vì hai đường thẳng song song khi và chỉ khi chúng đồng phẳng và không có điểm chung.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: A

Gọi \({x_1} \le {x_2} \le \ldots \le {x_{110}}\) là mức lương của 110 nhân viên nhận được công ty trả trong 1 tháng.

Tứ phân vị thứ hai của dãy số liệu \({x_1} \le {x_2} \le \ldots \le {x_{110}}\) là \(\frac{1}{2}\left( {{x_{55}} + {x_{56}}} \right)\). Do \({x_{55}} \in \left[ {10;15} \right)\) và\({x_{56}} \in \left[ {15;20} \right)\). Nên đó tứ phân vị thứ hai của mẫu số liệu ghép nhóm là \({Q_2} = 15\).

Câu 2

\(f\left( x \right) = \frac{{{x^2} + x + 1}}{{x - 1}}\).

\(f\left( x \right) = \frac{{{x^2} - x - 2}}{{{x^2} - 1}}\).

\(f\left( x \right) = \frac{{{x^2} + x + 1}}{x}\).

\(f\left( x \right) = \frac{{x + 1}}{{x - 1}}\).

Lời giải

Đáp án đúng là: C

+) Hàm số \(f\left( x \right) = \frac{{{x^2} + x + 1}}{{x - 1}}\) có tập xác định là \(\mathbb{R}\backslash \left\{ 1 \right\}\). Do đó hàm số \(f\left( x \right) = \frac{{{x^2} + x + 1}}{{x - 1}}\) không liên tục tại \(x = 1\).

+) Hàm số \(f\left( x \right) = \frac{{{x^2} - x - 2}}{{{x^2} - 1}}\) có tập xác định là \(\mathbb{R}\backslash \left\{ { \pm 1} \right\}\). Do đó hàm số \(f\left( x \right) = \frac{{{x^2} - x - 2}}{{{x^2} - 1}}\) không liên tục tại \(x = 1\).

+) Hàm số \(f\left( x \right) = \frac{{x + 1}}{{x - 1}}\) có tập xác định là \(\mathbb{R}\backslash \left\{ 1 \right\}\). Do đó hàm số \(f\left( x \right) = \frac{{x + 1}}{{x - 1}}\) không liên tục tại \(x = 1\).

+) Hàm số \(f\left( x \right) = \frac{{{x^2} + x + 1}}{x}\) có tập xác định là \(\mathbb{R}\backslash \left\{ 0 \right\}\).

Có \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = \mathop {\lim }\limits_{x \to 1} \frac{{{x^2} + x + 1}}{x} = 3 = f\left( 1 \right)\). Do đó hàm số \(f\left( x \right) = \frac{{{x^2} + x + 1}}{x}\) liên tục tại \(x = 1\).

Câu 4

A.

\(\mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {{x^2} - x + 1} + x - 2} \right) = - \frac{3}{2}\).

B.

\(\mathop {\lim }\limits_{x \to - {1^ - }} \frac{{3x + 2}}{{x + 1}} = - \infty \).

C.

\(\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} - x + 1} + x - 2} \right) = + \infty \).

D.

\(\mathop {\lim }\limits_{x \to - {1^ + }} \frac{{3x + 2}}{{x + 1}} = - \infty \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

\(\mathop {\lim }\limits_{x \to {x_0}} \left| {f\left( x \right)} \right| = \left| L \right|.\)

\(\mathop {\lim }\limits_{x \to {x_0}} \sqrt[3]{{f\left( x \right)}} = \sqrt[3]{L}.\)

\(\mathop {\lim }\limits_{x \to {x_0}} \sqrt {f\left( x \right)} = \sqrt L .\)

\(\mathop {\lim }\limits_{x \to {x_0}} \left[ { - f\left( x \right)} \right] = - L.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

\(f\left( x \right) = \tan x + 5\).

\(f\left( x \right) = \frac{{{x^2} + 3}}{{5 - x}}\).

\(f\left( x \right) = \sqrt {x - 6} \).

\(f\left( x \right) = \frac{{x + 5}}{{{x^2} + 4}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP