Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Gọi \(\Delta \) là giao tuyến chung của hai mặt phẳng \(\left( {SAD} \right)\) và \(\left( {SBC} \right)\). Đường thẳng \(\Delta \) song song với đường thẳng nào dưới đây?
Đường thẳng \(AB\).
Đường thẳng \(AD\).
Đường thẳng \(AC\).
Đường thẳng \(SA\).
Quảng cáo
Trả lời:
Đáp án đúng là: B

Hai mặt phẳng \(\left( {SAD} \right)\) và \(\left( {SBC} \right)\) có chung điểm \(S\) và lần lượt chứa hai đường thẳng song song \(AD\), \(BC\) nên giao tuyến \(\Delta \) đi qua \(S\) và lần lượt song song với \(AD\), \(BC\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
\(15\).
\(16\).
\(17\).
\(18\).
Lời giải
Đáp án đúng là: A
Gọi \({x_1} \le {x_2} \le \ldots \le {x_{110}}\) là mức lương của 110 nhân viên nhận được công ty trả trong 1 tháng.
Tứ phân vị thứ hai của dãy số liệu \({x_1} \le {x_2} \le \ldots \le {x_{110}}\) là \(\frac{1}{2}\left( {{x_{55}} + {x_{56}}} \right)\). Do \({x_{55}} \in \left[ {10;15} \right)\) và\({x_{56}} \in \left[ {15;20} \right)\). Nên đó tứ phân vị thứ hai của mẫu số liệu ghép nhóm là \({Q_2} = 15\).
Câu 2
\(f\left( x \right) = \frac{{{x^2} + x + 1}}{{x - 1}}\).
\(f\left( x \right) = \frac{{{x^2} - x - 2}}{{{x^2} - 1}}\).
\(f\left( x \right) = \frac{{{x^2} + x + 1}}{x}\).
\(f\left( x \right) = \frac{{x + 1}}{{x - 1}}\).
Lời giải
Đáp án đúng là: C
+) Hàm số \(f\left( x \right) = \frac{{{x^2} + x + 1}}{{x - 1}}\) có tập xác định là \(\mathbb{R}\backslash \left\{ 1 \right\}\). Do đó hàm số \(f\left( x \right) = \frac{{{x^2} + x + 1}}{{x - 1}}\) không liên tục tại \(x = 1\).
+) Hàm số \(f\left( x \right) = \frac{{{x^2} - x - 2}}{{{x^2} - 1}}\) có tập xác định là \(\mathbb{R}\backslash \left\{ { \pm 1} \right\}\). Do đó hàm số \(f\left( x \right) = \frac{{{x^2} - x - 2}}{{{x^2} - 1}}\) không liên tục tại \(x = 1\).
+) Hàm số \(f\left( x \right) = \frac{{x + 1}}{{x - 1}}\) có tập xác định là \(\mathbb{R}\backslash \left\{ 1 \right\}\). Do đó hàm số \(f\left( x \right) = \frac{{x + 1}}{{x - 1}}\) không liên tục tại \(x = 1\).
+) Hàm số \(f\left( x \right) = \frac{{{x^2} + x + 1}}{x}\) có tập xác định là \(\mathbb{R}\backslash \left\{ 0 \right\}\).
Có \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = \mathop {\lim }\limits_{x \to 1} \frac{{{x^2} + x + 1}}{x} = 3 = f\left( 1 \right)\). Do đó hàm số \(f\left( x \right) = \frac{{{x^2} + x + 1}}{x}\) liên tục tại \(x = 1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
\(\mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {{x^2} - x + 1} + x - 2} \right) = - \frac{3}{2}\).
\(\mathop {\lim }\limits_{x \to - {1^ - }} \frac{{3x + 2}}{{x + 1}} = - \infty \).
\(\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} - x + 1} + x - 2} \right) = + \infty \).
\(\mathop {\lim }\limits_{x \to - {1^ + }} \frac{{3x + 2}}{{x + 1}} = - \infty \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
\(\mathop {\lim }\limits_{x \to {x_0}} \left| {f\left( x \right)} \right| = \left| L \right|.\)
\(\mathop {\lim }\limits_{x \to {x_0}} \sqrt[3]{{f\left( x \right)}} = \sqrt[3]{L}.\)
\(\mathop {\lim }\limits_{x \to {x_0}} \sqrt {f\left( x \right)} = \sqrt L .\)
\(\mathop {\lim }\limits_{x \to {x_0}} \left[ { - f\left( x \right)} \right] = - L.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Mặt phẳng \(\left( {ABD} \right)\).
Mặt phẳng \(\left( {ACD} \right)\).
Mặt phẳng \(\left( {ABC} \right)\).
Mặt phẳng \(\left( {BCD} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
