Cho đường thẳng \(d\) song song với mặt phẳng \((P).\) Mệnh đề nào sau đây đúng ?
Đường thẳng \(d\) không có điểm chung với mặt phẳng \((P).\)
Đường thẳng \(d\) có đúng một điểm chung với mặt phẳng \((P).\)
Đường thẳng \(d\) có đúng hai điểm chung với mặt phẳng \((P).\)
Đường thẳng \(d\) có vô số điểm chung với mặt phẳng \((P).\)
Quảng cáo
Trả lời:
Đáp án đúng là: A
Dựa vào định nghĩa, đường thẳng \(d\) song song với mặt phẳng \((P)\) khi đó đường thẳng \(d\) không có điểm chung với mặt phẳng \((P).\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
\(15\).
\(16\).
\(17\).
\(18\).
Lời giải
Đáp án đúng là: A
Gọi \({x_1} \le {x_2} \le \ldots \le {x_{110}}\) là mức lương của 110 nhân viên nhận được công ty trả trong 1 tháng.
Tứ phân vị thứ hai của dãy số liệu \({x_1} \le {x_2} \le \ldots \le {x_{110}}\) là \(\frac{1}{2}\left( {{x_{55}} + {x_{56}}} \right)\). Do \({x_{55}} \in \left[ {10;15} \right)\) và\({x_{56}} \in \left[ {15;20} \right)\). Nên đó tứ phân vị thứ hai của mẫu số liệu ghép nhóm là \({Q_2} = 15\).
Câu 2
\(f\left( x \right) = \frac{{{x^2} + x + 1}}{{x - 1}}\).
\(f\left( x \right) = \frac{{{x^2} - x - 2}}{{{x^2} - 1}}\).
\(f\left( x \right) = \frac{{{x^2} + x + 1}}{x}\).
\(f\left( x \right) = \frac{{x + 1}}{{x - 1}}\).
Lời giải
Đáp án đúng là: C
+) Hàm số \(f\left( x \right) = \frac{{{x^2} + x + 1}}{{x - 1}}\) có tập xác định là \(\mathbb{R}\backslash \left\{ 1 \right\}\). Do đó hàm số \(f\left( x \right) = \frac{{{x^2} + x + 1}}{{x - 1}}\) không liên tục tại \(x = 1\).
+) Hàm số \(f\left( x \right) = \frac{{{x^2} - x - 2}}{{{x^2} - 1}}\) có tập xác định là \(\mathbb{R}\backslash \left\{ { \pm 1} \right\}\). Do đó hàm số \(f\left( x \right) = \frac{{{x^2} - x - 2}}{{{x^2} - 1}}\) không liên tục tại \(x = 1\).
+) Hàm số \(f\left( x \right) = \frac{{x + 1}}{{x - 1}}\) có tập xác định là \(\mathbb{R}\backslash \left\{ 1 \right\}\). Do đó hàm số \(f\left( x \right) = \frac{{x + 1}}{{x - 1}}\) không liên tục tại \(x = 1\).
+) Hàm số \(f\left( x \right) = \frac{{{x^2} + x + 1}}{x}\) có tập xác định là \(\mathbb{R}\backslash \left\{ 0 \right\}\).
Có \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = \mathop {\lim }\limits_{x \to 1} \frac{{{x^2} + x + 1}}{x} = 3 = f\left( 1 \right)\). Do đó hàm số \(f\left( x \right) = \frac{{{x^2} + x + 1}}{x}\) liên tục tại \(x = 1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
\(\mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {{x^2} - x + 1} + x - 2} \right) = - \frac{3}{2}\).
\(\mathop {\lim }\limits_{x \to - {1^ - }} \frac{{3x + 2}}{{x + 1}} = - \infty \).
\(\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} - x + 1} + x - 2} \right) = + \infty \).
\(\mathop {\lim }\limits_{x \to - {1^ + }} \frac{{3x + 2}}{{x + 1}} = - \infty \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
\(\mathop {\lim }\limits_{x \to {x_0}} \left| {f\left( x \right)} \right| = \left| L \right|.\)
\(\mathop {\lim }\limits_{x \to {x_0}} \sqrt[3]{{f\left( x \right)}} = \sqrt[3]{L}.\)
\(\mathop {\lim }\limits_{x \to {x_0}} \sqrt {f\left( x \right)} = \sqrt L .\)
\(\mathop {\lim }\limits_{x \to {x_0}} \left[ { - f\left( x \right)} \right] = - L.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
\(f\left( x \right) = \tan x + 5\).
\(f\left( x \right) = \frac{{{x^2} + 3}}{{5 - x}}\).
\(f\left( x \right) = \sqrt {x - 6} \).
\(f\left( x \right) = \frac{{x + 5}}{{{x^2} + 4}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
