Một cuộc khảo sát đã tiến hành xác định tuổi (theo năm) của 120 chiếc ô tô. Kết quả điểu tra được cho trong bảng sau.

Có bao nhiêu ô tô có độ tuổi từ 12 đến dưới 16?
\(23.\)
\(25.\)
\(37.\)
\(26.\)
Quảng cáo
Trả lời:
Đáp án đúng là: D
Có 26 ô tô có độ tuổi từ 12 đến dưới 16.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
\(f\left( x \right) = \tan x + 5\).
\(f\left( x \right) = \frac{{{x^2} + 3}}{{5 - x}}\).
\(f\left( x \right) = \sqrt {x - 6} \).
\(f\left( x \right) = \frac{{x + 5}}{{{x^2} + 4}}\).
Lời giải
Đáp án đúng là: D
+) Hàm số \(f\left( x \right) = \tan x + 5\) có tập xác định là \(\mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi ,k \in \mathbb{Z}} \right\}\).
Do đó hàm số \(f\left( x \right) = \tan x + 5\) không liên tục trên \(\mathbb{R}\).
+) Hàm số \(f\left( x \right) = \frac{{{x^2} + 3}}{{5 - x}}\)có tập xác định là \(\mathbb{R}\backslash \left\{ 5 \right\}\).
Do đó hàm số \(f\left( x \right) = \frac{{{x^2} + 3}}{{5 - x}}\) không liên tục trên \(\mathbb{R}\).
+) Hàm số \(f\left( x \right) = \sqrt {x - 6} \)có tập xác định là \(\left[ {6; + \infty } \right)\).
Do đó hàm số \(f\left( x \right) = \sqrt {x - 6} \) không liên tục trên \(\mathbb{R}\).
+) Hàm số \(f\left( x \right) = \frac{{x + 5}}{{{x^2} + 4}}\)có tập xác định là \(\mathbb{R}\).
Do đó hàm số \(f\left( x \right) = \frac{{x + 5}}{{{x^2} + 4}}\) liên tục trên \(\mathbb{R}\).
Lời giải
Đáp án đúng là: C
Giá trị đại diện của nhóm \([20;40)\) là \(\frac{{20 + 40}}{2} = 30\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Đường thẳng \(d \subset \left( P \right)\) và \(d' \subset \left( Q \right)\) thì \(d{\rm{//}}d'\).
Mọi đường thẳng đi qua điểm \(A \in \left( P \right)\) và song song với \(\left( Q \right)\) đều nằm trong \(\left( P \right)\).
Nếu đường thẳng \(\Delta \) cắt \(\left( P \right)\) thì \(\Delta \) cũng cắt \(\left( Q \right)\).
Nếu đường thẳng \(a \subset \left( Q \right)\) thì \(a{\rm{//}}\left( P \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
\({u_n} = 1 + 4n\).
\({u_n} = 5n\).
\({u_n} = 3 + 2n\).
\({u_n} = 2 + 3n\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Nếu hai mặt phẳng \(\left( \alpha \right)\) và \(\left( \beta \right)\) song song với nhau thì mọi đường thẳng nằm trong \(\left( \alpha \right)\) đều song song với \(\left( \beta \right)\).
Nếu hai mặt phẳng \(\left( \alpha \right)\) và \(\left( \beta \right)\) song song với nhau thì bất kì đường thẳng nào nằm trong \(\left( \alpha \right)\) cũng song song với bất kì đường thẳng nào nằm trong \(\left( \beta \right)\).
Nếu hai đường thẳng phân biệt \(a\) và \(b\) song song lần lượt nằm trong hai mặt phẳng \(\left( \alpha \right)\) và \(\left( \beta \right)\) phân biệt thì \(\left( \alpha \right){\rm{//}}\left( \beta \right)\).
Nếu đường thẳng \(d\) song song với \(\left( \alpha \right)\) thì nó song song với mọi đường thẳng nằm trong \(\left( \alpha \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.