Câu hỏi:

20/11/2025 91 Lưu

Người ta đếm số xe ô tô đi qua một trạm thu phí mỗi phút trong khoảng thời gian từ 9 giờ đến 9 giờ 30 phút sáng. Kết quả được ghi lại ở bảng sau:

Hãy ước lượng trung bình số xe đi qua trạm thu phí trong mỗi phút từ bảng tần số ghép nhóm trên.

A.

\(17,06.\)

B.

\(17,7.\)

C.

\(17.\)

D.

\(17,71.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Hiệu chỉnh lại bảng số liệu ta có:

Trung bình số xe đi qua trạm thu phí mỗi phút xấp xỉ bằng:

\(\frac{{8.5 + 13.9 + 18.3 + 23.9 + 28.4}}{{30}} \approx 17,7\).

(Sử dụng mẫu số liệu này cho các câu từ câu 33,

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: A

Gọi \({x_1} \le {x_2} \le \ldots \le {x_{110}}\) là mức lương của 110 nhân viên nhận được công ty trả trong 1 tháng.

Tứ phân vị thứ hai của dãy số liệu \({x_1} \le {x_2} \le \ldots \le {x_{110}}\) là \(\frac{1}{2}\left( {{x_{55}} + {x_{56}}} \right)\). Do \({x_{55}} \in \left[ {10;15} \right)\) và\({x_{56}} \in \left[ {15;20} \right)\). Nên đó tứ phân vị thứ hai của mẫu số liệu ghép nhóm là \({Q_2} = 15\).

Câu 2

\(f\left( x \right) = \frac{{{x^2} + x + 1}}{{x - 1}}\).

\(f\left( x \right) = \frac{{{x^2} - x - 2}}{{{x^2} - 1}}\).

\(f\left( x \right) = \frac{{{x^2} + x + 1}}{x}\).

\(f\left( x \right) = \frac{{x + 1}}{{x - 1}}\).

Lời giải

Đáp án đúng là: C

+) Hàm số \(f\left( x \right) = \frac{{{x^2} + x + 1}}{{x - 1}}\) có tập xác định là \(\mathbb{R}\backslash \left\{ 1 \right\}\). Do đó hàm số \(f\left( x \right) = \frac{{{x^2} + x + 1}}{{x - 1}}\) không liên tục tại \(x = 1\).

+) Hàm số \(f\left( x \right) = \frac{{{x^2} - x - 2}}{{{x^2} - 1}}\) có tập xác định là \(\mathbb{R}\backslash \left\{ { \pm 1} \right\}\). Do đó hàm số \(f\left( x \right) = \frac{{{x^2} - x - 2}}{{{x^2} - 1}}\) không liên tục tại \(x = 1\).

+) Hàm số \(f\left( x \right) = \frac{{x + 1}}{{x - 1}}\) có tập xác định là \(\mathbb{R}\backslash \left\{ 1 \right\}\). Do đó hàm số \(f\left( x \right) = \frac{{x + 1}}{{x - 1}}\) không liên tục tại \(x = 1\).

+) Hàm số \(f\left( x \right) = \frac{{{x^2} + x + 1}}{x}\) có tập xác định là \(\mathbb{R}\backslash \left\{ 0 \right\}\).

Có \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = \mathop {\lim }\limits_{x \to 1} \frac{{{x^2} + x + 1}}{x} = 3 = f\left( 1 \right)\). Do đó hàm số \(f\left( x \right) = \frac{{{x^2} + x + 1}}{x}\) liên tục tại \(x = 1\).

Câu 4

A.

\(\mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {{x^2} - x + 1} + x - 2} \right) = - \frac{3}{2}\).

B.

\(\mathop {\lim }\limits_{x \to - {1^ - }} \frac{{3x + 2}}{{x + 1}} = - \infty \).

C.

\(\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} - x + 1} + x - 2} \right) = + \infty \).

D.

\(\mathop {\lim }\limits_{x \to - {1^ + }} \frac{{3x + 2}}{{x + 1}} = - \infty \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

\(\mathop {\lim }\limits_{x \to {x_0}} \left| {f\left( x \right)} \right| = \left| L \right|.\)

\(\mathop {\lim }\limits_{x \to {x_0}} \sqrt[3]{{f\left( x \right)}} = \sqrt[3]{L}.\)

\(\mathop {\lim }\limits_{x \to {x_0}} \sqrt {f\left( x \right)} = \sqrt L .\)

\(\mathop {\lim }\limits_{x \to {x_0}} \left[ { - f\left( x \right)} \right] = - L.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

\(f\left( x \right) = \tan x + 5\).

\(f\left( x \right) = \frac{{{x^2} + 3}}{{5 - x}}\).

\(f\left( x \right) = \sqrt {x - 6} \).

\(f\left( x \right) = \frac{{x + 5}}{{{x^2} + 4}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP