CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

\(f\left( x \right) = \tan x + 5\).

\(f\left( x \right) = \frac{{{x^2} + 3}}{{5 - x}}\).

\(f\left( x \right) = \sqrt {x - 6} \).

\(f\left( x \right) = \frac{{x + 5}}{{{x^2} + 4}}\).

Lời giải

Đáp án đúng là: D

+) Hàm số \(f\left( x \right) = \tan x + 5\) có tập xác định là \(\mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi ,k \in \mathbb{Z}} \right\}\).

Do đó hàm số \(f\left( x \right) = \tan x + 5\) không liên tục trên \(\mathbb{R}\).

+) Hàm số \(f\left( x \right) = \frac{{{x^2} + 3}}{{5 - x}}\)có tập xác định là \(\mathbb{R}\backslash \left\{ 5 \right\}\).

Do đó hàm số \(f\left( x \right) = \frac{{{x^2} + 3}}{{5 - x}}\) không liên tục trên \(\mathbb{R}\).

+) Hàm số \(f\left( x \right) = \sqrt {x - 6} \)có tập xác định là \(\left[ {6; + \infty } \right)\).

Do đó hàm số \(f\left( x \right) = \sqrt {x - 6} \) không liên tục trên \(\mathbb{R}\).

+) Hàm số \(f\left( x \right) = \frac{{x + 5}}{{{x^2} + 4}}\)có tập xác định là \(\mathbb{R}\).

Do đó hàm số \(f\left( x \right) = \frac{{x + 5}}{{{x^2} + 4}}\) liên tục trên \(\mathbb{R}\).

Lời giải

Đáp án đúng là: D

Có \(0 \le \left| {{u_n} - 2} \right| < \frac{1}{{{n^3}}}\) mà \(\lim \frac{1}{{{n^3}}} = 0\) nên \(\lim \left| {{u_n} - 2} \right| = 0\)\( \Rightarrow \lim \left( {{u_n} - 2} \right) = 0\)\( \Rightarrow \lim {u_n} = 2\).

Câu 3

Đường thẳng \(d \subset \left( P \right)\) và \(d' \subset \left( Q \right)\) thì \(d{\rm{//}}d'\).

Mọi đường thẳng đi qua điểm \(A \in \left( P \right)\) và song song với \(\left( Q \right)\) đều nằm trong \(\left( P \right)\).

Nếu đường thẳng \(\Delta \) cắt \(\left( P \right)\) thì \(\Delta \) cũng cắt \(\left( Q \right)\).

Nếu đường thẳng \(a \subset \left( Q \right)\) thì \(a{\rm{//}}\left( P \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

\(10.\)

\(20.\)

\(30.\)

\(40.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A.

Nếu hai mặt phẳng \(\left( \alpha \right)\) và \(\left( \beta \right)\) song song với nhau thì mọi đường thẳng nằm trong \(\left( \alpha \right)\) đều song song với \(\left( \beta \right)\).

B.

Nếu hai mặt phẳng \(\left( \alpha \right)\) và \(\left( \beta \right)\) song song với nhau thì bất kì đường thẳng nào nằm trong \(\left( \alpha \right)\) cũng song song với bất kì đường thẳng nào nằm trong \(\left( \beta \right)\).

C.

Nếu hai đường thẳng phân biệt \(a\) và \(b\) song song lần lượt nằm trong hai mặt phẳng \(\left( \alpha \right)\) và \(\left( \beta \right)\) phân biệt thì \(\left( \alpha \right){\rm{//}}\left( \beta \right)\).

D.

Nếu đường thẳng \(d\) song song với \(\left( \alpha \right)\) thì nó song song với mọi đường thẳng nằm trong \(\left( \alpha \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP