Câu hỏi:

20/11/2025 9 Lưu

Rút gọn biểu thức sau:

\(B = \sin \left( {\frac{{5\pi }}{2} - x} \right) - \cos \left( {\frac{{11\pi }}{2} - x} \right) - 3\sin \left( {x - 5\pi } \right) + \tan \left( {\frac{{7\pi }}{2} - x} \right)\tan \left( { - x} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

\(B = \sin \left( {\frac{{5\pi }}{2} - x} \right) - \cos \left( {\frac{{11\pi }}{2} - x} \right) - 3\sin \left( {x - 5\pi } \right) + \tan \left( {\frac{{7\pi }}{2} - x} \right)\tan \left( { - x} \right)\)

\( = \sin \left( {2\pi + \frac{\pi }{2} - x} \right) - \cos \left( {6\pi - \frac{\pi }{2} - x} \right) - 3\sin \left( {x + \pi - 6\pi } \right) + \tan \left( {3\pi + \frac{\pi }{2} - x} \right)\tan \left( { - x} \right)\)

\( = \sin \left( {\frac{\pi }{2} - x} \right) - \cos \left( {\frac{\pi }{2} + x} \right) - 3\sin \left( {x + \pi } \right) - \tan \left( {\frac{\pi }{2} - x} \right)\tan x\)

\( = \cos x + \sin x + 3\sin x - \cot x\tan x\)

\( = \cos x + 4\sin x - 1\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: D

Có \(0 \le \left| {{u_n} - 2} \right| < \frac{1}{{{n^3}}}\) mà \(\lim \frac{1}{{{n^3}}} = 0\) nên \(\lim \left| {{u_n} - 2} \right| = 0\)\( \Rightarrow \lim \left( {{u_n} - 2} \right) = 0\)\( \Rightarrow \lim {u_n} = 2\).

Câu 2

\(f\left( x \right) = \tan x + 5\).

\(f\left( x \right) = \frac{{{x^2} + 3}}{{5 - x}}\).

\(f\left( x \right) = \sqrt {x - 6} \).

\(f\left( x \right) = \frac{{x + 5}}{{{x^2} + 4}}\).

Lời giải

Đáp án đúng là: D

+) Hàm số \(f\left( x \right) = \tan x + 5\) có tập xác định là \(\mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi ,k \in \mathbb{Z}} \right\}\).

Do đó hàm số \(f\left( x \right) = \tan x + 5\) không liên tục trên \(\mathbb{R}\).

+) Hàm số \(f\left( x \right) = \frac{{{x^2} + 3}}{{5 - x}}\)có tập xác định là \(\mathbb{R}\backslash \left\{ 5 \right\}\).

Do đó hàm số \(f\left( x \right) = \frac{{{x^2} + 3}}{{5 - x}}\) không liên tục trên \(\mathbb{R}\).

+) Hàm số \(f\left( x \right) = \sqrt {x - 6} \)có tập xác định là \(\left[ {6; + \infty } \right)\).

Do đó hàm số \(f\left( x \right) = \sqrt {x - 6} \) không liên tục trên \(\mathbb{R}\).

+) Hàm số \(f\left( x \right) = \frac{{x + 5}}{{{x^2} + 4}}\)có tập xác định là \(\mathbb{R}\).

Do đó hàm số \(f\left( x \right) = \frac{{x + 5}}{{{x^2} + 4}}\) liên tục trên \(\mathbb{R}\).

Câu 3

Đường thẳng \(d \subset \left( P \right)\) và \(d' \subset \left( Q \right)\) thì \(d{\rm{//}}d'\).

Mọi đường thẳng đi qua điểm \(A \in \left( P \right)\) và song song với \(\left( Q \right)\) đều nằm trong \(\left( P \right)\).

Nếu đường thẳng \(\Delta \) cắt \(\left( P \right)\) thì \(\Delta \) cũng cắt \(\left( Q \right)\).

Nếu đường thẳng \(a \subset \left( Q \right)\) thì \(a{\rm{//}}\left( P \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

\(10.\)

\(20.\)

\(30.\)

\(40.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP