Trục đối xứng của đồ thị hàm số \(y = 3{x^2} - 2x + 1\) là đường thẳng nào sau đây?
Câu hỏi trong đề: Bộ 10 đề thi cuối kì 1 Toán 10 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Đáp án đúng là: C
Hàm số: \(y = 3{x^2} - 2x + 1\) có: \(x = - \frac{b}{{2a}} = - \frac{{ - 2}}{{2.3}} = \frac{1}{3}\).
Vậy trục đối xứng của đồ thị hàm số là \(x = \frac{1}{3}\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(3{x^2} - 2\left( {m + 5} \right)x - {m^2} + 2m + 8 = 0 \Leftrightarrow x = m + 2\) hoặc \(x = \frac{{4 - m}}{3}\).
* Với ta có
Bất phương trình (1)\( \Leftrightarrow \frac{{4 - m}}{3} \le x \le m + 2\)
Vậy tập nghiệm của bất phương trình (1) là \(\left[ {\frac{{4 - m}}{3};m + 2} \right]\)
Suy ra mọi \[x \in \left[ { - 1;1} \right]\] đều là nghiệm của bất phương trình (1)
khi và chỉ khi \[\left[ { - 1;1} \right] \subset \left[ {\frac{{4 - m}}{3};m + 2} \right] \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{ - 1 \ge \frac{{4 - m}}{3}}\\{1 \le m + 2}\end{array}} \right.\]\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m \ge 7}\\{m \ge - 1}\end{array}} \right. \Leftrightarrow m \ge 7\).
Kết hợp với điều kiện \(m > - \frac{1}{2}\) ta có \(m \ge 7\) thỏa mãn yêu cầu bài toán
* Với \(m + 2 < \frac{{4 - m}}{3} \Leftrightarrow m < - \frac{1}{2}\) ta có
Bất phương trình (1)\( \Leftrightarrow m + 2 \le x \le \frac{{4 - m}}{3}\)
Vậy tập nghiệm của bất phương trình (1) là \(\left[ {m + 2;\frac{{4 - m}}{3}} \right]\)
Suy ra mọi \[x \in \left[ { - 1;1} \right]\] đều là nghiệm của bất phương trình (1)
khi và chỉ khi \[\left[ { - 1;1} \right] \subset \left[ {m + 2;\frac{{4 - m}}{3}} \right] \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{ - 1 \ge m + 2}\\{1 \le \frac{{4 - m}}{3}}\end{array}} \right.\]\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m \le - 3}\\{m \le 1}\end{array}} \right. \Leftrightarrow m \le - 3\).
Kết hợp với điều kiện \(m < - \frac{1}{2}\) ta có \(m \le - 3\) thỏa mãn yêu cầu bài toán.
* Với \(m = - \frac{1}{2}\) ta có bất phương trình (1)\( \Leftrightarrow x = \frac{3}{2}\) nên \(m = - \frac{1}{2}\) không thỏa mãn yêu cầu bài toán.
Vậy \(m \in ( - \infty ; - 3] \cup {\rm{[}}7; + \infty )\) là giá trị cần tìm.
Câu 2
Lời giải
Đáp án đúng là: A
Ta có: \(\overrightarrow {IA} + 2\overrightarrow {IB} + 3\overrightarrow {IC} = \overrightarrow 0 \Leftrightarrow \overrightarrow {IA} + 2\left( {\overrightarrow {IA} + \overrightarrow {AB} } \right) + 3\left( {\overrightarrow {IA} + \overrightarrow {AC} } \right) = 0\)
\( \Leftrightarrow 6\overrightarrow {IA} + 2\overrightarrow {AB} + 3\overrightarrow {AC} = 0 \Leftrightarrow \overrightarrow {AI} = \frac{1}{3}\overrightarrow {AB} + \frac{1}{2}\overrightarrow {AC} \).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
