Câu hỏi:

26/11/2025 42 Lưu

Giải các phương trình sau:

a) \[\left( {2x + 9} \right)\left( {\frac{2}{3}x - 5} \right) = 0\].         

b) \(\frac{{x + 3}}{{x - 3}} = \frac{3}{{{x^2} - 3x}} + \frac{1}{x}.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) \[\left( {2x + 9} \right)\left( {\frac{2}{3}x - 5} \right) = 0\]

\(2x + 9 = 0\) hoặc \[\frac{2}{3}x - 5 = 0\]

\(2x =  - 9\) hoặc \(\frac{2}{3}x = 5\)

\(x =  - \frac{9}{2}\) hoặc \(x = \frac{{15}}{2}\).

Vậy phương trình đã cho có hai nghiệm là \(x =  - \frac{9}{2};\,\,x = \frac{{15}}{2}\).

b) Điều kiện xác định \(x \ne 0;\,\,x \ne 3.\)

\(\frac{{x + 3}}{{x - 3}} = \frac{3}{{{x^2} - 3x}} + \frac{1}{x}\)

\(\frac{{\left( {x + 3} \right)x}}{{x\left( {x - 3} \right)}} = \frac{3}{{x\left( {x - 3} \right)}} + \frac{{x - 3}}{{x\left( {x - 3} \right)}}\)

\(\left( {x + 3} \right)x = 3 + x - 3\)

\({x^2} + 3x = 3 + x - 3\)

\({x^2} + 2x = 0\)

\(x\left( {x + 2} \right) = 0\)

\(x = 0\) hoặc \(x + 2 = 0\)

\(x = 0\) (không thỏa mãn) hoặc \(x =  - 2\) (thỏa mãn).

Vậy nghiệm phương trình đã cho là \(x =  - 2\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(x\) (gam) và \(y\) (gam) lần lượt là khối lượng dung dịch muối ăn với nồng độ \(5\% \) và \(20\% \) cần dùng \(\left( {0 < x < 1\,\,000,\,\,0 < y < 1\,\,000} \right)\).

Theo bài, cần pha trộn hai dung dịch trên để được \(1\,\,000\) g dung dịch muối ăn mới nên ta có phương trình \(x + y = 1\,\,000\).  (1)

Khối lượng muối ăn trong \(x\) (gam) dung dịch muối ăn \(5\% \) là \(5\%  \cdot x = 0,05x\) (gam).

Khối lượng muối ăn trong \(y\) (gam) dung dịch muối ăn \(20\% \) là \(20\%  \cdot x = 0,2x\) (gam).

Khối lượng muối ăn trong \(1\,\,000\) gam dung dịch muối ăn \(14\% \) là \(1\,\,000 \cdot 14\%  = 140\) (gam).

Khi đó, ta có phương trình: \(0,05x + 0,2y = 140\). (2)

Từ phương trình (1) và phương trình (2) ta có hệ phương trình: \(\left\{ \begin{array}{l}x + y = 1\,\,000\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\0,05x + 0,2y = 140\,\,\,\,\,\,\,\,\left( 2 \right)\end{array} \right.\)

Nhân hai vế của phương trình (2) với 5, ta được hệ mới là \(\left\{ \begin{array}{l}x + y = 1\,\,000\\0,25x + y = 700\end{array} \right.\)

Trừ từng vế phương trình thứ nhất cho phương trình thứ hai của hệ trên, ta được:

\(0,75x = 300,\) suy ra \(x = 400\) (thỏa mãn).

Thay \(x = 400\) vào phương trình (1), ta được: \(400 + y = 1\,\,000\) suy ra \(y = 600\) (thỏa mãn).

Vậy cần trộn \(400\) gam dung dịch muối ăn \(5\% \) với \(600\) gam dung dịch muối ăn \(20\% \) để được \(1\,\,000\) gam dung dịch muối ăn \(14\% .\)

Lời giải

a) \(3x - 8 > 4x - 12\)

 \(3x - 4x >  - 12 + 8\)

 \( - x >  - 4\)

   \(x < 4\).

Vậy nghiệm của bất phương trình đã cho là \(x < 4.\)

b) \[\frac{{2x + 1}}{3} - \frac{{x - 4}}{4} \le \frac{{3x + 1}}{6} - \frac{{x - 4}}{{12}}\]

\[\frac{{4\left( {2x + 1} \right)}}{{12}} - \frac{{3\left( {x - 4} \right)}}{{12}} \le \frac{{2\left( {3x + 1} \right)}}{{12}} - \frac{{x - 4}}{{12}}\]

\[4\left( {2x + 1} \right) - 3\left( {x - 4} \right) \le 2\left( {3x + 1} \right) - \left( {x - 4} \right)\]

\[8x + 4 - 3x + 12 \le 6x + 2 - x + 4\]

\[5x + 16 \le 5x + 6\]

\[5x - 5x \le 6 - 16\]

\[0x \le  - 10\].

Vậy bất phương trình đã cho vô nghiệm.