Câu hỏi:

27/11/2025 36 Lưu

Trong một thí nghiệm nghiên cứu, quần thể ruồi giấm đang tăng lên sau t ngày theo mô hình tăng trưởng hàm mũ \(y = C \cdot {e^{kt}}\)(\(C\) và \(k\) là các hằng số). Sau hai ngày, có 100 con ruồi giấm và sau bốn ngày có 300 con. Hỏi sau 5 ngày có bao nhiêu con ruồi giấm (kết quả làm tròn đến hàng đơn vị)?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Theo đề ta có: \(\left\{ \begin{array}{l}100 = C \cdot {e^{k \cdot 2}}\\300 = C \cdot {e^{k \cdot 4}}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}C = \frac{{100}}{3}\\k = \frac{{\ln 3}}{2}\end{array} \right.\). Suy ra \(y = \frac{{100}}{3} \cdot {e^{\frac{{\ln 3}}{2}t}}\).

Vậy sau \(t = 5\), có khoảng \[y = \frac{{100}}{3} \cdot {e^{\frac{{\ln 3}}{2} \cdot 5}} \approx 520\] (con).

Trả lời: 520.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Tập xác định của hàm số \(D = \left[ { - \frac{3}{2}; + \infty } \right)\).

Đúng
Sai

b) Nghiệm của phương trình \(f\left( x \right) = 1\) là \(x = 0\).

Đúng
Sai

c) Tập nghiệm của bất phương trình \(f\left( x \right) < 2\) có đúng 3 số nguyên.

Đúng
Sai
d) Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(f\left( x \right)\) trên \(\left[ {0;3} \right]\) là 3
Đúng
Sai

Lời giải

a) Điều kiện \(2x + 3 > 0 \Leftrightarrow x >  - \frac{3}{2}\).

Tập xác định của hàm số \(D = \left( { - \frac{3}{2}; + \infty } \right)\).

b) \(f\left( x \right) = 1\) \( \Leftrightarrow {\log _3}\left( {2x + 3} \right) = 1\)\( \Leftrightarrow 2x + 3 = 3\)\( \Leftrightarrow x = 0\).

c) Ta có \(f\left( x \right) < 2 \Leftrightarrow {\log _3}\left( {2x + 3} \right) < 2\)\( \Leftrightarrow 2x + 3 < 9\)\( \Leftrightarrow x < 3\).

Kết hợp với điều kiện ta có \(S = \left( { - \frac{3}{2};3} \right)\), mà \(x \in \mathbb{Z}\) nên \(x \in \left\{ { - 1;0;1;2} \right\}\).

Vậy có 4 giá trị nguyên của \(x\) để \(f\left( x \right) < 2\).

d) Vì hàm số \(y = f\left( x \right) = {\log _3}\left( {2x + 3} \right)\) đồng biến trên \(\left( { - \frac{3}{2}; + \infty } \right)\) nên \(\mathop {\min }\limits_{\left[ {0;3} \right]} f\left( x \right) = f\left( 0 \right) = 1;\mathop {\max }\limits_{\left[ {0;3} \right]} f\left( x \right) = f\left( 3 \right) = 2\).

Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(f\left( x \right)\) trên \(\left[ {0;3} \right]\) là 3.

Đáp án: a) Sai;      b) Đúng;      c) Sai;       d) Đúng.

Lời giải

Ta có \(f\left( x \right) + f\left( {1 - x} \right) = \frac{1}{2}{\log _2}\left( {\frac{{2x}}{{1 - x}}} \right) + \frac{1}{2}{\log _2}\left( {\frac{{2\left( {1 - x} \right)}}{{1 - \left( {1 - x} \right)}}} \right)\)\( = \frac{1}{2}{\log _2}\frac{{2x}}{{1 - x}} + \frac{1}{2}{\log _2}\frac{{2\left( {1 - x} \right)}}{x}\)

\( = \frac{1}{2}{\log _2}\left[ {\frac{{2x}}{{1 - x}} \cdot \frac{{2\left( {1 - x} \right)}}{x}} \right]\)\( = \frac{1}{2}{\log _2}4 = 1\).

Ta có \(S = \left[ {f\left( {\frac{1}{{2025}}} \right) + f\left( {\frac{{2024}}{{2025}}} \right)} \right] + \left[ {f\left( {\frac{2}{{2025}}} \right) + f\left( {\frac{{2023}}{{2025}}} \right)} \right] + ... + \left[ {f\left( {\frac{{1012}}{{2025}}} \right) + f\left( {\frac{{1013}}{{2025}}} \right)} \right] = 1012\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \({\log _a}b > c \Leftrightarrow b > c\).   

B. \({\log _a}b > {\log _a}c \Leftrightarrow b > c\). 

C. \({a^b} > {a^c} \Leftrightarrow b > c\). 
D. \[{\log _a}b < {\log _a}c \Leftrightarrow b < c\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \({\log _{15}}4 = \frac{{a + b}}{2}\). 

B. \({\log _{15}}4 = \frac{2}{{a - b}}\).  
C. \({\log _{15}}4 = \frac{{a - b}}{2}\).  
D. \({\log _{15}}4 = \frac{2}{{a + b}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP