Câu hỏi:

04/12/2025 9 Lưu

Tìm tham số \[m\] để hàm số \[f(x) = \left\{ \begin{array}{l}\frac{{{x^2} - 4}}{{x + 2}}\quad \,{\rm{khi}}\;x \ne - 2\\\quad m\quad \quad {\rm{khi}}\;x = - 2\end{array} \right.\] liên tục tại \(x = - 2\).

A. \(m = 4\).    
B. \(m = 0\).       
C. \(m = - 4\).       
D. \(m = 2\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn C

Ta có \(\mathop {\lim }\limits_{x \to - 2} f\left( x \right) = \mathop {\lim }\limits_{x \to - 2} \frac{{{x^2} - 4}}{{x + 2}} = \mathop {\lim }\limits_{x \to - 2} \frac{{\left( {x + 2} \right)\left( {x - 2} \right)}}{{x + 2}} = \mathop {\lim }\limits_{x \to - 2} \left( {x - 2} \right) = - 4\); \(f\left( { - 2} \right) = m\).

Hàm số đã cho liên tục tại \(x = - 2\) \( \Leftrightarrow \mathop {\lim }\limits_{x \to - 2} f\left( x \right) = f\left( { - 2} \right) \Leftrightarrow m = - 4\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Với \(n = 5\) ta có \({x_5} = 75 + 9.4 = 111\,\left( {{\rm{cm}}} \right)\).

Vậy một đứa trẻ phát triển bình thường có chiều cao khi 5 tuổi là \(111\,\left( {{\rm{cm}}} \right)\).

Lời giải

Đặt \(S = 1 + 2 + {2^2} + {2^3} + ... + {2^n}\).

Dễ thấy \(S\) là tổng của \(n + 1\) số hạng đầu của một cấp số nhân với \({u_1} = 1\); \({u_2} = 2\); công bội \(q = \frac{{{u_2}}}{{{u_1}}} = 2\).

Do đó \(S = {u_1}.\frac{{1 - {q^{n + 1}}}}{{1 - q}} = 1.\frac{{1 - {2^{n + 1}}}}{{1 - 2}} = {2.2^n} - 1\).

Suy ra \[\lim \frac{{1 + 2 + {2^2} + {2^3} + ... + {2^n}}}{{{2^n} + 1}} = \lim \frac{{{{2.2}^n} - 1}}{{{2^n} + 1}} = \lim \frac{{2 - {{\left( {\frac{1}{2}} \right)}^n}}}{{1 + {{\left( {\frac{1}{2}} \right)}^n}}} = 2\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. 4.   
B. 2.       
C. 1.     

D. \(\frac{2}{3}\).

 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(I = 2\).       
B. \(I = - 2\).        
C. \(I = - \infty \). 
D. \(I = 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP