Xét tính liên tục của hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{2{x^2} + 3x - 27}}{{x - 3}} & \,\,{\rm{khi}}\,x > 3\\ - x + 18 & \,\,{\rm{khi}}\,x \le 3\end{array} \right.\) tại \(x = 3\).
Xét tính liên tục của hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{2{x^2} + 3x - 27}}{{x - 3}} & \,\,{\rm{khi}}\,x > 3\\ - x + 18 & \,\,{\rm{khi}}\,x \le 3\end{array} \right.\) tại \(x = 3\).
Quảng cáo
Trả lời:
\(f(3) = - 3 + 18 = 15\); \[\mathop {\lim }\limits_{x \to {3^ - }} f(x) = \mathop {\lim }\limits_{x \to {3^ - }} ( - x + 18) = 15\].
\[\mathop {\lim }\limits_{x \to {3^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {3^ + }} \frac{{2{x^2} + 3x - 27}}{{x - 3}} = \mathop {\lim }\limits_{x \to {3^ + }} \frac{{(x - 3)(2x + 9)}}{{x - 3}} = \mathop {\lim }\limits_{x \to {3^ + }} \left( {2x + 9} \right) = 15\].
Vì \(\mathop {\lim }\limits_{x \to {3^ + }} f(x) = \mathop {\lim }\limits_{x \to {3^ - }} f(x) = f(3)\) nên hàm số liên tục tại \[x = 3\].
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Với \(n = 5\) ta có \({x_5} = 75 + 9.4 = 111\,\left( {{\rm{cm}}} \right)\).
Vậy một đứa trẻ phát triển bình thường có chiều cao khi 5 tuổi là \(111\,\left( {{\rm{cm}}} \right)\).
Lời giải
Đặt \(S = 1 + 2 + {2^2} + {2^3} + ... + {2^n}\).
Dễ thấy \(S\) là tổng của \(n + 1\) số hạng đầu của một cấp số nhân với \({u_1} = 1\); \({u_2} = 2\); công bội \(q = \frac{{{u_2}}}{{{u_1}}} = 2\).
Do đó \(S = {u_1}.\frac{{1 - {q^{n + 1}}}}{{1 - q}} = 1.\frac{{1 - {2^{n + 1}}}}{{1 - 2}} = {2.2^n} - 1\).
Suy ra \[\lim \frac{{1 + 2 + {2^2} + {2^3} + ... + {2^n}}}{{{2^n} + 1}} = \lim \frac{{{{2.2}^n} - 1}}{{{2^n} + 1}} = \lim \frac{{2 - {{\left( {\frac{1}{2}} \right)}^n}}}{{1 + {{\left( {\frac{1}{2}} \right)}^n}}} = 2\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
