Câu hỏi:

04/12/2025 39 Lưu

 Xét tính liên tục của hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{2{x^2} + 3x - 27}}{{x - 3}} & \,\,{\rm{khi}}\,x > 3\\ - x + 18 & \,\,{\rm{khi}}\,x \le 3\end{array} \right.\) tại \(x = 3\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

\(f(3) = - 3 + 18 = 15\); \[\mathop {\lim }\limits_{x \to {3^ - }} f(x) = \mathop {\lim }\limits_{x \to {3^ - }} ( - x + 18) = 15\].

\[\mathop {\lim }\limits_{x \to {3^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {3^ + }} \frac{{2{x^2} + 3x - 27}}{{x - 3}} = \mathop {\lim }\limits_{x \to {3^ + }} \frac{{(x - 3)(2x + 9)}}{{x - 3}} = \mathop {\lim }\limits_{x \to {3^ + }} \left( {2x + 9} \right) = 15\].

\(\mathop {\lim }\limits_{x \to {3^ + }} f(x) = \mathop {\lim }\limits_{x \to {3^ - }} f(x) = f(3)\) nên hàm số liên tục tại \[x = 3\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Quãng đường mỗi lần rơi xuống của quả bóng lập thành cấp số nhân có \({u_1} = 64\,;\,q = \frac{1}{2}\)

Tổng quãng đường rơi xuống sau 7 lần chạm đất của quả bóng là \({S_7} = \frac{{{u_1}.({q^7} - 1)}}{{q - 1}} = 127\) (m)

Quãng đường mỗi lần nảy lên của quả bóng lập thành cấp số nhân có số hạng đầu \({v_1} = 32\), công bội \(q = \frac{1}{2}\).

Tổng quãng đường nảy lên 6 lần là \[{s_6} = \frac{{{v_1}.({q^6} - 1)}}{{q - 1}} = 63\] (m). Vậy tổng quãng đường là 190 (m).

Lời giải

Đặt \(S = 1 + 2 + {2^2} + {2^3} + ... + {2^n}\).

Dễ thấy \(S\) là tổng của \(n + 1\) số hạng đầu của một cấp số nhân với \({u_1} = 1\); \({u_2} = 2\); công bội \(q = \frac{{{u_2}}}{{{u_1}}} = 2\).

Do đó \(S = {u_1}.\frac{{1 - {q^{n + 1}}}}{{1 - q}} = 1.\frac{{1 - {2^{n + 1}}}}{{1 - 2}} = {2.2^n} - 1\).

Suy ra \[\lim \frac{{1 + 2 + {2^2} + {2^3} + ... + {2^n}}}{{{2^n} + 1}} = \lim \frac{{{{2.2}^n} - 1}}{{{2^n} + 1}} = \lim \frac{{2 - {{\left( {\frac{1}{2}} \right)}^n}}}{{1 + {{\left( {\frac{1}{2}} \right)}^n}}} = 2\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. qua \[S\] và song song với \[AD\].            
B. qua \[S\] và song song với \[CD\].
C. qua \[S\] và cắt \[AB\].         
D. \[SO\] với \[O\] là tâm hình bình hành \[ABCD\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP