Câu hỏi:

05/12/2025 50 Lưu

Trong các điều kiện sau, điều kiện nào kết luận hai mặt phẳng \(\left( \alpha \right)\)\(\left( \beta \right)\) song song nhau?

A. \(\left( \alpha \right)\) chứa một đường thẳng song song với \(\left( \beta \right).\)
B.  \(\left( \alpha \right)\) chứa hai đường thẳng song song với \(\left( \beta \right).\)
C. \(\left( \alpha \right)\) song song với một đường thằng nằm trong \(\left( \beta \right).\)
D. \(\left( \alpha \right)\) chứa hai đường thẳng cắt nhau và song song với \(\left( \beta \right).\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn D

              Dựa vào điều kiện để hai mặt phẳng song song.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\left( {SBC} \right) \cap \left( {MNP} \right) = d,\,\,d\) song song với \(BC.\)
B. \(MN\) cắt \(\left( {SBC} \right).\)
C. \(\left( {MNP} \right){\rm{//}}\left( {SAD} \right).\)
D. \(MN{\rm{//}}\left( {SBC} \right)\)\(\left( {MNP} \right){\rm{//}}\left( {SBC} \right).\)

Lời giải

Chọn D

Cho hình chóp S.ABCD có ABCD là hình thang đáy AD và BC (ảnh 1)

\(\left\{ \begin{array}{l}NP{\rm{//}}AD\\M = \left( {MNP} \right) \cap \left( {SAD} \right)\end{array} \right. \Rightarrow \left( {MNP} \right) \cap \left( {SAD} \right) = MR{\rm{//AD//BC}}\)

Gọi \(I\) là trung điểm \(AD \Rightarrow \frac{{SR}}{{SD}} = \frac{{SM}}{{SI}} = \frac{2}{3} \Rightarrow \frac{{DR}}{{DS}} = \frac{1}{3} = \frac{{DP}}{{DC}} \Rightarrow PR{\rm{//}}SC\)

\( \Rightarrow \left( {MNPR} \right){\rm{//}}\left( {SBC} \right) \Rightarrow MN{\rm{//}}\left( {SBC} \right)\).

Lời giải

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm I (ảnh 1)

a) Chứng minh \(AB//mp(MNI).\)

\[AB//MN\] tính chất đường trung bình tam giác

\[\left. \begin{array}{l}AB//MN \subset \left( {MNI} \right)\\AB \not\subset \left( {MNI} \right)\end{array} \right\} \Rightarrow AB//\left( {MNI} \right).\]

b) Chứng minh \(mp\left( {MNI} \right)//mp\left( {SCD} \right).\)

\(\left. \begin{array}{l}MI//SC \subset \left( {SCD} \right)\\MI \not\subset \left( {SCD} \right)\end{array} \right\} \Rightarrow MI//\left( {SCD} \right)\)

\(\left. \begin{array}{l}NI//SD \subset \left( {SCD} \right)\\NI \not\subset \left( {SCD} \right)\end{array} \right\} \Rightarrow NI//\left( {SCD} \right)\)

\(\left. \begin{array}{l}MI//\left( {SCD} \right)\\NI//\left( {SCD} \right)\\MI \cap IN = I\end{array} \right\} \Rightarrow \left( {MNI} \right)//\left( {SCD} \right).\)

Câu 4

A. \[ - 1.\]           
B. \[ - \frac{1}{2}.\]   
C. \(\frac{1}{2}.\)       
D. \[\frac{3}{2}.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[\frac{3}{2}.\]      
B. \[\frac{1}{2}.\]         
C. \(2.\)     
D. \(1.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. Mặt phẳng \(\left( {NOM} \right)\) cắt mặt phẳng \[\left( {OPM} \right).\]
B. \[\left( {MON} \right)\] song song với \[\left( {SBC} \right).\]
C. \(\left( {PON} \right) \cap \left( {MNP} \right) = NP.\)                              
D. \(\left( {NMP} \right)\) song song với \[\left( {SBD} \right).\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP