CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

   1. \(a)\,\mathop {\lim }\limits_{x \to 1} \frac{{\sqrt {x + 3} - 2}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{1}{{\sqrt {x + 3} + 2}} = \frac{1}{4}.\)

             

                     \(b)\,\lim \frac{{{3^n} - {{4.2}^n}}}{{{{3.2}^n} + {{4.3}^n}}} = \lim \frac{{1 - 4.{{\left( {\frac{2}{3}} \right)}^n}}}{{3.{{\left( {\frac{2}{3}} \right)}^n} + 4}} = \frac{1}{4}.\)

     

Tính các giới hạn sau :  a)  Lim căn {x + 3}  - 2 / x - 1 (ảnh 2)

Lời giải

Chọn A

Cho hình chóp S.ABCD đáy ABCD là hình bình hành (ảnh 1)

Ta có:

\(\left\{ \begin{array}{l}S \in \left( {SAD} \right) \cap \left( {SBC} \right)\\AD \subset \left( {SAD} \right),BC \subset \left( {SBC} \right)\\AD//BC\end{array} \right.\)

\( \Rightarrow \) Giao tuyến của hai mặt phẳng \(\left( {SAD} \right)\)\(\left( {SBC} \right)\) là đường thẳng đi qua \(S\)và song song với \(AD\).

Câu 3

A. \( - 3.\)      
B. \(1.\)      
C. \( - 1.\)       
D. \(3.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\left( {ABB'A'} \right)//\left( {CDD'C'} \right).\)     
B. \(\left( {BDA'} \right)//\left( {D'B'C} \right).\)    
C. \(\left( {BA'D'} \right)//\left( {ADC} \right).\)    
D. \(\left( {ACD'} \right)//\left( {A'C'B} \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP