Câu hỏi:

05/12/2025 6 Lưu

Phần 3. Trắc nghiệm trả lời ngắn

Diện tích ba mặt của hình hộp chữ nhật lần lượt là \(15\;{\rm{c}}{{\rm{m}}^{\rm{2}}},24\;{\rm{c}}{{\rm{m}}^{\rm{2}}},40\;{\rm{c}}{{\rm{m}}^{\rm{2}}}\). Tính thể tích của khối hộp đó theo đơn vị cm3.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Diện tích ba mặt của hình hộp chữ nhật lần lượt là \(15\;{\rm{c}}{{\rm{m}}^{\rm{2}}},24\;{\rm{c}}{{\rm{m}}^{\rm{2}}},40\;{\rm{c}}{{\rm{m}}^{\rm{2}}}\). Tính thể tích của khối hộp đó theo đơn vị cm3. (ảnh 1)

Gọi độ dài cạnh của hình hộp chữ nhật như hình vẽ.

Theo đề ta có: \(ab = 15;bc = 24;ac = 40\).

Suy ra \[{\left( {abc} \right)^2} = 15 \cdot 24 \cdot 40 = 14400 \Rightarrow abc = 120\].

Vậy thể tích khối hộp chữ nhật là 120 cm3.

Trả lời: 120.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Khi đó \({V_{S.ABCD}} = \frac{1}{3}SO \cdot {S_{ABCD}} = \frac{1}{3} \cdot 3 \cdot {\left( {2\sqrt 3 } \right)^2} = 12\).  Trả lời: 12. (ảnh 1)

Gọi \(O\) là tâm của hình vuông \(ABCD\).

Vì \(S.ABCD\) là hình chóp đều nên \(SO \bot \left( {ABCD} \right)\) \( \Rightarrow SO \bot CD\) (1).

Gọi \(I\) là trung điểm của \(CD\). Khi đó \(OI \bot CD\) (2) và \(OI = \frac{{AD}}{2} = \sqrt 3 \).

Từ (1) và (2), suy ra \(CD \bot \left( {SOI} \right) \Rightarrow CD \bot SI\).

Khi đó \(\left[ {A,CD,S} \right] = \widehat {SIO} = 60^\circ \).

Xét \(\Delta SOI\) vuông tại \(O\), có \(SO = OI \cdot \tan 60^\circ = \sqrt 3 \cdot \tan 60^\circ = 3\).

Khi đó \({V_{S.ABCD}} = \frac{1}{3}SO \cdot {S_{ABCD}} = \frac{1}{3} \cdot 3 \cdot {\left( {2\sqrt 3 } \right)^2} = 12\).

Trả lời: 12.

Lời giải

Đáp án: a) Đúng;    b) Sai;   c) (ảnh 1)

Từ giả thiết suy ra \(ABC.A'B'C'\) là hình lăng trụ đứng.

Gọi \(M'\) là trung điểm của \(B'C'\).

Suy ra \(MM'//BB'\) mà \(BB' \bot \left( {A'B'C'} \right)\) nên \(MM' \bot \left( {A'B'C'} \right)\).

Do đó \(A'M'\) là hình chiếu của \(A'M\) lên mặt phẳng \(\left( {A'B'C'} \right)\).

Do đó \(\left( {A'M,\left( {A'B'C'} \right)} \right) = \left( {A'M,A'M'} \right) = \widehat {MA'M'}\).

Ta có \(\Delta A'B'C'\) đều cạnh \(a\) nên \(A'M' = \frac{{a\sqrt 3 }}{2}\), \(MM' = BB' = 2a\).

\(MM' \bot \left( {A'B'C'} \right)\) nên \(MM' \bot A'M'\).

Xét \(\Delta A'M'M\) vuông tại \(M'\) , có \(\tan \widehat {MA'M'} = \frac{{MM'}}{{A'M'}} = \frac{{2a}}{{\frac{{a\sqrt 3 }}{2}}} = \frac{4}{{\sqrt 3 }} \approx 2,31\).

Trả lời: 2,31.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. Hình hộp có các cạnh bằng nhau gọi là hình lập phương.     
B. Hình lăng trụ đứng có đáy là một đa giác đều được gọi là hình lăng trụ đều.     
C. Hình lăng trụ đứng là hình lăng trụ có các cạnh bên vuông góc với các mặt đáy.     
D. Hình lăng trụ đứng có đáy là hình chữ nhật được gọi là hình hộp chữ nhật.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(2a\).                            
B. \(a\sqrt 3 \).                 
C. \(a\).      
D. \(a\sqrt 2 \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(SC\)\(AB\).           
B. \(SC\)\(AC\).          
C. \(SC\)\(SA\).                                    
D. \(SC\) \(SB\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP