Cho hình chóp đều \(S.ABCD\) có cạnh đáy bằng \(2\sqrt 3 \). Góc nhị diện \(\left[ {A,CD,S} \right]\) bằng \(60^\circ \). Tính thể tích khối chóp \(S.ABCD\).
Cho hình chóp đều \(S.ABCD\) có cạnh đáy bằng \(2\sqrt 3 \). Góc nhị diện \(\left[ {A,CD,S} \right]\) bằng \(60^\circ \). Tính thể tích khối chóp \(S.ABCD\).
Quảng cáo
Trả lời:

Gọi \(O\) là tâm của hình vuông \(ABCD\).
Vì \(S.ABCD\) là hình chóp đều nên \(SO \bot \left( {ABCD} \right)\) \( \Rightarrow SO \bot CD\) (1).
Gọi \(I\) là trung điểm của \(CD\). Khi đó \(OI \bot CD\) (2) và \(OI = \frac{{AD}}{2} = \sqrt 3 \).
Từ (1) và (2), suy ra \(CD \bot \left( {SOI} \right) \Rightarrow CD \bot SI\).
Khi đó \(\left[ {A,CD,S} \right] = \widehat {SIO} = 60^\circ \).
Xét \(\Delta SOI\) vuông tại \(O\), có \(SO = OI \cdot \tan 60^\circ = \sqrt 3 \cdot \tan 60^\circ = 3\).
Khi đó \({V_{S.ABCD}} = \frac{1}{3}SO \cdot {S_{ABCD}} = \frac{1}{3} \cdot 3 \cdot {\left( {2\sqrt 3 } \right)^2} = 12\).
Trả lời: 12.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Từ giả thiết suy ra \(ABC.A'B'C'\) là hình lăng trụ đứng.
Gọi \(M'\) là trung điểm của \(B'C'\).
Suy ra \(MM'//BB'\) mà \(BB' \bot \left( {A'B'C'} \right)\) nên \(MM' \bot \left( {A'B'C'} \right)\).
Do đó \(A'M'\) là hình chiếu của \(A'M\) lên mặt phẳng \(\left( {A'B'C'} \right)\).
Do đó \(\left( {A'M,\left( {A'B'C'} \right)} \right) = \left( {A'M,A'M'} \right) = \widehat {MA'M'}\).
Ta có \(\Delta A'B'C'\) đều cạnh \(a\) nên \(A'M' = \frac{{a\sqrt 3 }}{2}\), \(MM' = BB' = 2a\).
Vì \(MM' \bot \left( {A'B'C'} \right)\) nên \(MM' \bot A'M'\).
Xét \(\Delta A'M'M\) vuông tại \(M'\) , có \(\tan \widehat {MA'M'} = \frac{{MM'}}{{A'M'}} = \frac{{2a}}{{\frac{{a\sqrt 3 }}{2}}} = \frac{4}{{\sqrt 3 }} \approx 2,31\).
Trả lời: 2,31.
Câu 2
A. \(H\).
Lời giải
Lời giải
Có \(SA \bot \left( {ABC} \right) \Rightarrow SA \bot BC\) mà \(BC \bot AB\) nên \(BC \bot \left( {SAB} \right)\)\( \Rightarrow BC \bot AH\).
Lại có \(AH \bot SB\) nên \(AH \bot \left( {SBC} \right)\).
Do đó \(H\) là hình chiếu của \(A\) lên mặt phẳng \(\left( {SBC} \right)\). Chọn A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
