Câu hỏi:

10/12/2025 67 Lưu

Giải phương trình: \(\sin \left( {x + \frac{\pi }{6}} \right) - \sin 2x = 0\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

    Ta có:

\(\sin \left( {x + \frac{\pi }{6}} \right) - \sin 2x = 0\,\,\, \Leftrightarrow \,\,\,\sin \left( {x + \frac{\pi }{6}} \right) = \sin 2x\)

\( \Leftrightarrow \,\,\,\left[ \begin{array}{l}x + \frac{\pi }{6} = 2x + k2\pi \\x + \frac{\pi }{6} = \pi - 2x + k2\pi \end{array} \right.\)\( \Leftrightarrow \,\,\,\left[ \begin{array}{l}x = \frac{\pi }{6} - k2\pi \\x = \frac{{5\pi }}{{18}} + k\frac{{2\pi }}{3}\end{array} \right.,\,k \in \mathbb{Z}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

         Ta có: \(AB = 2\,\,\, \Rightarrow \,\,\,{S_1} = {2^2} = 4\); \({A_1}{B_1} = \sqrt 2 \,\,\, \Rightarrow \,\,\,{S_2} = {\sqrt 2 ^2} = 2\); \({A_2}{B_2} = 1\,\,\, \Rightarrow \,\,\,{S_3} = {1^2} = 1\);

\({A_3}{B_3} = \frac{{\sqrt 2 }}{2}\,\,\, \Rightarrow \,\,\,{S_4} = {\left( {\frac{{\sqrt 2 }}{2}} \right)^2} = \frac{1}{2}\);….

         Do đó \({S_1}\), \({S_2}\), \({S_3}\),…, \({S_{100}}\) một cấp số nhân với số hạng đầu \({u_1} = {S_1} = 4\) và công bội \(q = \frac{1}{2}\).

Suy ra \(S = {S_1} + {S_2} + {S_3} + ... + {S_{100}}\)\( = {S_1}.\frac{{1 - {q^n}}}{{1 - q}}\)\( = \frac{{4\left( {1 - {{\left( {\frac{1}{2}} \right)}^{100}}} \right)}}{{1 - \left( {\frac{1}{2}} \right)}} = 8.\).

Lời giải

a) Tìm giao tuyến của hai mặt phẳng \(\left( {EOK} \right)\)\(\left( {SBC} \right)\), tìm giao điểm của \(SC\)\(\left( {EOK} \right)\).

\(E\) là điểm chung của \(\left( {EOK} \right)\) \(\left( {SBC} \right)\)

\(\left( {EOK} \right)\) chứa \(OK\), \(\left( {SBC} \right)\) chứa \(BC\), nên giao tuyến của \(\left( {EOK} \right)\) \(\left( {SBC} \right)\) là đường thẳng \(d\) qua \(E\) và .

Gọi \(Q = d \cap SC\) \( \Rightarrow \,\,Q = SC \cap \left( {EOK} \right)\).

b) 

Gọi \(F\) là trung điểm \(SA\), khi đó \(EFDK\) là hình bình hành, mà \(FD \subset \left( {SAD} \right)\) nên EK // (SAD) 

Câu 3

A. Số vi khuẩn sau mỗi phút lập thành cấp số cộng với \({u_1} = 1,\) công sai \(d = 2\).
B. Số vi khuẩn sau mỗi phút lập thành cấp số nhân với \({u_1} = 1,\) công sai \(d = 2\).
C. Số vi khuẩn sau mỗi phút lập thành cấp số nhân với \({u_1} = 1,\) công bội \(q = 2\).
D. Số vi khuẩn sau mỗi phút lập thành cấp số nhân với \({u_1} = 1,\) công bội \(q = \frac{1}{2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(a = - 2\).    
B. \(a = 0\).     
C. \(a = 1\).  
D. \(a = 2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(D = \mathbb{R}\).                                                    
B. \(D = \mathbb{R}\backslash \left\{ {\pi + k\pi ,\,\,k \in \mathbb{Z}} \right\}\).
C. \(D = \mathbb{R}\backslash \left\{ {k2\pi ,\,\,k \in \mathbb{Z}} \right\}\).                                                     
D. \(D = \mathbb{R}\backslash \left\{ {\pi + k2\pi ,\,\,k \in \mathbb{Z}} \right\}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP