Quảng cáo
Trả lời:
Ta có:
\(\sin \left( {x + \frac{\pi }{6}} \right) - \sin 2x = 0\,\,\, \Leftrightarrow \,\,\,\sin \left( {x + \frac{\pi }{6}} \right) = \sin 2x\)
\( \Leftrightarrow \,\,\,\left[ \begin{array}{l}x + \frac{\pi }{6} = 2x + k2\pi \\x + \frac{\pi }{6} = \pi - 2x + k2\pi \end{array} \right.\)\( \Leftrightarrow \,\,\,\left[ \begin{array}{l}x = \frac{\pi }{6} - k2\pi \\x = \frac{{5\pi }}{{18}} + k\frac{{2\pi }}{3}\end{array} \right.,\,k \in \mathbb{Z}\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
a) Tìm giao tuyến của hai mặt phẳng \(\left( {EOK} \right)\) và \(\left( {SBC} \right)\), tìm giao điểm của \(SC\) và \(\left( {EOK} \right)\).
Có \(E\) là điểm chung của \(\left( {EOK} \right)\) và \(\left( {SBC} \right)\)
\(\left( {EOK} \right)\) chứa \(OK\), \(\left( {SBC} \right)\) chứa \(BC\), nên giao tuyến của \(\left( {EOK} \right)\) và \(\left( {SBC} \right)\) là đường thẳng \(d\) qua \(E\) và .
Gọi \(Q = d \cap SC\) \( \Rightarrow \,\,Q = SC \cap \left( {EOK} \right)\).
b)
Gọi \(F\) là trung điểm \(SA\), khi đó \(EFDK\) là hình bình hành, mà \(FD \subset \left( {SAD} \right)\) nên EK // (SAD)
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.