Cho hình vuông \(ABCD\) có cạnh bằng \(2\) và có diện tích \({S_1}\). Nối \(4\) trung điểm \({A_1}\), \({B_1}\), \({C_1}\),\({D_1}\) theo thứ tự của \(4\)cạnh \(AB\), \(BC\), \(CD\), \(DA\) ta được hình vuông thứ hai \({A_1}{B_1}{C_1}{D_1}\) có diện tích \({S_2}\). Tiếp tục làm như thế, ta được hình vuông thứ ba là \({A_2}{B_2}{C_2}{D_2}\) có diện tích \({S_3}\), …và cứ tiếp tục làm như thế, ta tính được các hình vuông lần lượt có diện tích \({S_4}\), \({S_5}\),…,\({S_{100}}\) (xem hình vẽ). Tính tổng \(S = {S_1} + {S_2} + {S_3} + ... + {S_{100}}\).
Quảng cáo
Trả lời:
Ta có: \(AB = 2\,\,\, \Rightarrow \,\,\,{S_1} = {2^2} = 4\); \({A_1}{B_1} = \sqrt 2 \,\,\, \Rightarrow \,\,\,{S_2} = {\sqrt 2 ^2} = 2\); \({A_2}{B_2} = 1\,\,\, \Rightarrow \,\,\,{S_3} = {1^2} = 1\);
\({A_3}{B_3} = \frac{{\sqrt 2 }}{2}\,\,\, \Rightarrow \,\,\,{S_4} = {\left( {\frac{{\sqrt 2 }}{2}} \right)^2} = \frac{1}{2}\);….
Do đó \({S_1}\), \({S_2}\), \({S_3}\),…, \({S_{100}}\) là một cấp số nhân với số hạng đầu \({u_1} = {S_1} = 4\) và công bội \(q = \frac{1}{2}\).
Suy ra \(S = {S_1} + {S_2} + {S_3} + ... + {S_{100}}\)\( = {S_1}.\frac{{1 - {q^n}}}{{1 - q}}\)\( = \frac{{4\left( {1 - {{\left( {\frac{1}{2}} \right)}^{100}}} \right)}}{{1 - \left( {\frac{1}{2}} \right)}} = 8.\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn A
Ta có: \(\cos 2x = {\cos ^2}x - {\sin ^2}x = 2{\cos ^2}x - 1 = 1 - 2{\sin ^2}x\)
Lời giải
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.