Cho hình vuông \(ABCD\) có cạnh bằng \(2\) và có diện tích \({S_1}\). Nối \(4\) trung điểm \({A_1}\), \({B_1}\), \({C_1}\),\({D_1}\) theo thứ tự của \(4\)cạnh \(AB\), \(BC\), \(CD\), \(DA\) ta được hình vuông thứ hai \({A_1}{B_1}{C_1}{D_1}\) có diện tích \({S_2}\). Tiếp tục làm như thế, ta được hình vuông thứ ba là \({A_2}{B_2}{C_2}{D_2}\) có diện tích \({S_3}\), …và cứ tiếp tục làm như thế, ta tính được các hình vuông lần lượt có diện tích \({S_4}\), \({S_5}\),…,\({S_{100}}\) (xem hình vẽ). Tính tổng \(S = {S_1} + {S_2} + {S_3} + ... + {S_{100}}\).
Quảng cáo
Trả lời:
Ta có: \(AB = 2\,\,\, \Rightarrow \,\,\,{S_1} = {2^2} = 4\); \({A_1}{B_1} = \sqrt 2 \,\,\, \Rightarrow \,\,\,{S_2} = {\sqrt 2 ^2} = 2\); \({A_2}{B_2} = 1\,\,\, \Rightarrow \,\,\,{S_3} = {1^2} = 1\);
\({A_3}{B_3} = \frac{{\sqrt 2 }}{2}\,\,\, \Rightarrow \,\,\,{S_4} = {\left( {\frac{{\sqrt 2 }}{2}} \right)^2} = \frac{1}{2}\);….
Do đó \({S_1}\), \({S_2}\), \({S_3}\),…, \({S_{100}}\) là một cấp số nhân với số hạng đầu \({u_1} = {S_1} = 4\) và công bội \(q = \frac{1}{2}\).
Suy ra \(S = {S_1} + {S_2} + {S_3} + ... + {S_{100}}\)\( = {S_1}.\frac{{1 - {q^n}}}{{1 - q}}\)\( = \frac{{4\left( {1 - {{\left( {\frac{1}{2}} \right)}^{100}}} \right)}}{{1 - \left( {\frac{1}{2}} \right)}} = 8.\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Tìm giao tuyến của hai mặt phẳng \(\left( {EOK} \right)\) và \(\left( {SBC} \right)\), tìm giao điểm của \(SC\) và \(\left( {EOK} \right)\).
Có \(E\) là điểm chung của \(\left( {EOK} \right)\) và \(\left( {SBC} \right)\)
\(\left( {EOK} \right)\) chứa \(OK\), \(\left( {SBC} \right)\) chứa \(BC\), nên giao tuyến của \(\left( {EOK} \right)\) và \(\left( {SBC} \right)\) là đường thẳng \(d\) qua \(E\) và .
Gọi \(Q = d \cap SC\) \( \Rightarrow \,\,Q = SC \cap \left( {EOK} \right)\).
b)
Gọi \(F\) là trung điểm \(SA\), khi đó \(EFDK\) là hình bình hành, mà \(FD \subset \left( {SAD} \right)\) nên EK // (SAD)
Câu 2
Lời giải
Chọn C
Ta có: Một loại vi khuẩn được nuôi cấy trong ống nghiệm, cứ mỗi phút lại nhân đôi một lần. Ban đầu có một vi khuẩn. Do đó, số vi khuẩn sau mỗi phút lập thành cấp số nhân với \({u_1} = 1,\) công bội \(q = 2\).
Câu 3
Tìm \[a\] để \(\mathop {\lim }\limits_{x \to + \infty } \frac{{a{x^2} + x - 1}}{{2{x^2} + 1}} = 1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
D. \(AB\) và \(CD\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.