Câu hỏi:

12/12/2025 7 Lưu

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a\), \(SD = \frac{{3a}}{2}\), hình chiếu vuông góc của \(S\) trên mặt phẳng \(\left( {ABCD} \right)\) là trung điểm của cạnh \(AB\). Tính theo \(a\) thể tích khối chóp \(S.ABCD\).

A. \(\frac{{{a^3}}}{2}\). 

B. \(\frac{{{a^3}}}{3}\).  
C. \(\frac{{{a^3}}}{4}\). 
D. \(\frac{{2{a^3}}}{3}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SD = 3a/2, hình chiếu vuông góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Tính theo a thể tích khối chóp S.ABCD. (ảnh 1)

Gọi \(H\) là trung điểm \(AB\)\( \Rightarrow \)\(SH \bot \left( {ABCD} \right)\).

Ta có: \(SH = \sqrt {S{D^2} - H{D^2}}  = \sqrt {S{D^2} - \left( {A{H^2} + A{D^2}} \right)}  = \sqrt {\frac{{9{a^2}}}{4} - \left( {\frac{{{a^2}}}{4} + {a^2}} \right)}  = a\).

Vậy: \({V_{S.ABCD}} = \frac{1}{3}{S_{ABCD}}.SH = \frac{{{a^3}}}{3}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Do \(I\) là trung điểm của \[SC\] và \(O\) là trung điểm \(AC\) nên \(IO{\rm{//}}SA\). Do \[SA \bot \left( {ABCD} \right)\] nên \[IO \bot \left( {ABCD} \right)\], hay khoảng cách từ \(I\) đến mặt phẳng \(\left( {ABCD} \right)\) bằng độ dài đoạn thẳng \(IO\).

Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, SA vuông góc (ABCD). Gọi I là trung điểm của SC. Khoảng cách từ I đến mặt phẳng (ABCD) bằng độ dài đoạn thẳng nào? (ảnh 1)

Câu 2

A. \(y = {\left( {\frac{1}{{\sqrt 2 }}} \right)^2}\).

B. \(y = {\left( {\sqrt 2 } \right)^x}\). 
C. \(y = {\left( {\frac{1}{3}} \right)^x}\). 
D. \(y = {3^x}\).

Lời giải

Đồ thị hàm số ở hình vẽ là đồ thị của hàm số mũ có dạng \(y = {a^x}\). Loại đáp án A

Dựa vào đồ thị ta thấy hàm số nghịch biến trên \(\mathbb{R}\) nên \(0 < a < 1\). Loại đáp án B, D

Vậy đồ thị trong hình vẽ là đồ thị hàm số \(y = {\left( {\frac{1}{3}} \right)^x}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(CD \bot AB\).  

B. \(AC \bot BD\).  
C. \(BC \bot AD\). 
D. \(BC \bot CD\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP