Câu hỏi:

12/12/2025 44 Lưu

Hai cầu thủ sút phạt đền. Mỗi người đá 1 lần với xác suất ghi bàn tương ứng là 0,8 và 0,7. Tính xác suất để có ít nhất 1 cầu thủ ghi bàn.

A. \(P(X) = 0,42\).          

B. \(P(X) = 0,94\).        
C. \(P(X) = 0,234\).      
D. \(P(X) = 0,9\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \(A\) là biến cố "Cầu thủ thứ nhất ghi bàn"; \(B\) là biến cố "Cầu thủ thứ hai ghi bàn"; \(X\) là biến cố "Ít nhất một trong hai cầu thủ ghi bàn".

- Cầu thủ thứ nhất ghi bàn và cầu thủ hai không ghi bàn là \(A\bar B\), ta có:

\(P(A\bar B) = P(A) \cdot P(\bar B) = 0,8 \cdot 0,3 = 0,24.{\rm{ }}\)

- Cầu thủ thứ nhất không ghi bàn và cầu thủ hai ghi bàn là \(\bar AB\), ta có:

\(P(\bar AB) = P(\bar A) \cdot P(B) = 0,2 \cdot 0,7 = 0,14.{\rm{ }}\)

- Cả hai cầu thủ ghi bàn là \(AB\), ta có: \(P(AB) = P(A) \cdot P(B) = 0,8 \cdot 0,7 = 0,56\).

Biến cố để có ít nhất một cầu thủ ghi bàn là \(X = A\bar B \cup \bar AB \cup AB\).

Xác suất để có ít nhất một cầu thủ ghi bàn là:

\(P(X) = P(A\bar B) + P(\bar AB) + P(AB) = 0,24 + 0,14 + 0,56 = 0,94.\)

Chọn B

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: \((SC,(SAB)) \approx {12,1^0}\)

Lời giải

Cho hình chóp S.ABC có đáy là tam giác đều cạnh a,SB vuông góc (ABC) và SB = 4a. Tính góc giữa đường thẳng SC và mặt phẳng (SAB)? (ảnh 1)

Kẻ \(CI \bot AB \Rightarrow I\) là trung điểm \(AB\)

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{CI \bot AB}\\{CI \bot SB}\end{array} \Rightarrow CI \bot (SAB)} \right.\) tại \(I\) và \(SC\) cắt mp\((SAB)\) tại \(S\)

\( \Rightarrow SI\) là hình chiếu của \(SC\) trên mp \((SAB)\)

\( \Rightarrow (SC,(SAB)) = (SC,SI) = \widehat {CSI}\)

Ta có: \(IC = \frac{{a\sqrt 3 }}{2}\)

Ta có: \(SC = \sqrt {S{B^2} + B{C^2}}  = \sqrt {{{(4a)}^2} + {a^2}}  = \sqrt {17} a\)

Xét \(\Delta SCI\) vuông tại \(I\): \(\sin \widehat {CSI} = \frac{{CI}}{{SC}} = \frac{{\frac{{a\sqrt 3 }}{2}}}{{\sqrt {17} a}} = \frac{{\sqrt {51} }}{{34}} \Rightarrow \widehat {CSI} \approx {12,1^0}\)

Vậy \((SC,(SAB)) \approx {12,1^0}\).

Lời giải

Do \(I\) là trung điểm của \[SC\] và \(O\) là trung điểm \(AC\) nên \(IO{\rm{//}}SA\). Do \[SA \bot \left( {ABCD} \right)\] nên \[IO \bot \left( {ABCD} \right)\], hay khoảng cách từ \(I\) đến mặt phẳng \(\left( {ABCD} \right)\) bằng độ dài đoạn thẳng \(IO\).

Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, SA vuông góc (ABCD). Gọi I là trung điểm của SC. Khoảng cách từ I đến mặt phẳng (ABCD) bằng độ dài đoạn thẳng nào? (ảnh 1)

Câu 4

A. \(y = {\left( {\frac{1}{{\sqrt 2 }}} \right)^2}\).

B. \(y = {\left( {\sqrt 2 } \right)^x}\). 
C. \(y = {\left( {\frac{1}{3}} \right)^x}\). 
D. \(y = {3^x}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(y' = {17^{ - x}}\ln 17\). 

B. \(y' =  - x{.17^{ - x - 1}}\). 
C. \(y' =  - {17^{ - x}}\).     
D. \(y' =  - {17^{ - x}}\ln 17\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[y + 16 =  - 9\left( {x + 3} \right)\].  

B. \[y - 16 =  - 9\left( {x - 3} \right)\]. 
C. \[y =  - 9\left( {x + 3} \right)\]. 
D. \[y - 16 =  - 9\left( {x + 3} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP