Câu hỏi:

12/12/2025 26 Lưu

Hai cầu thủ sút phạt đền. Mỗi người đá 1 lần với xác suất ghi bàn tương ứng là 0,8 và 0,7. Tính xác suất để có ít nhất 1 cầu thủ ghi bàn.

A. \(P(X) = 0,42\).          

B. \(P(X) = 0,94\).        
C. \(P(X) = 0,234\).      
D. \(P(X) = 0,9\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \(A\) là biến cố "Cầu thủ thứ nhất ghi bàn"; \(B\) là biến cố "Cầu thủ thứ hai ghi bàn"; \(X\) là biến cố "Ít nhất một trong hai cầu thủ ghi bàn".

- Cầu thủ thứ nhất ghi bàn và cầu thủ hai không ghi bàn là \(A\bar B\), ta có:

\(P(A\bar B) = P(A) \cdot P(\bar B) = 0,8 \cdot 0,3 = 0,24.{\rm{ }}\)

- Cầu thủ thứ nhất không ghi bàn và cầu thủ hai ghi bàn là \(\bar AB\), ta có:

\(P(\bar AB) = P(\bar A) \cdot P(B) = 0,2 \cdot 0,7 = 0,14.{\rm{ }}\)

- Cả hai cầu thủ ghi bàn là \(AB\), ta có: \(P(AB) = P(A) \cdot P(B) = 0,8 \cdot 0,7 = 0,56\).

Biến cố để có ít nhất một cầu thủ ghi bàn là \(X = A\bar B \cup \bar AB \cup AB\).

Xác suất để có ít nhất một cầu thủ ghi bàn là:

\(P(X) = P(A\bar B) + P(\bar AB) + P(AB) = 0,24 + 0,14 + 0,56 = 0,94.\)

Chọn B

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: \(\frac{{36}}{{121}}\)

Lời giải

Ta có sơ đồ cây như sau:

Một chiếc túi chứa 5 quả bóng màu đỏ và 6 quả bóng màu xanh có cùng kích thước và khối lượng. Lần lượt lấy ngẫu nhiên một quả bóng rồi trả lại vào túi. Tính xác suất lấy được hai quả bóng màu xanh sau 2 lượt lấy (ảnh 1)

Trong đó: Đ là biến cố "Lấy được quả bóng màu đỏ”, X là biến cố "Lấy được quả bóng màu xanh".

Dựa vào sơ đồ cây, xác suất lấy 2 bóng xanh sau 2 lượt là \({\left( {\frac{6}{{11}}} \right)^2} = \frac{{36}}{{121}}\).

Lời giải

Do \(I\) là trung điểm của \[SC\] và \(O\) là trung điểm \(AC\) nên \(IO{\rm{//}}SA\). Do \[SA \bot \left( {ABCD} \right)\] nên \[IO \bot \left( {ABCD} \right)\], hay khoảng cách từ \(I\) đến mặt phẳng \(\left( {ABCD} \right)\) bằng độ dài đoạn thẳng \(IO\).

Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, SA vuông góc (ABCD). Gọi I là trung điểm của SC. Khoảng cách từ I đến mặt phẳng (ABCD) bằng độ dài đoạn thẳng nào? (ảnh 1)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(y' = {17^{ - x}}\ln 17\). 

B. \(y' =  - x{.17^{ - x - 1}}\). 
C. \(y' =  - {17^{ - x}}\).     
D. \(y' =  - {17^{ - x}}\ln 17\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[y + 16 =  - 9\left( {x + 3} \right)\].  

B. \[y - 16 =  - 9\left( {x - 3} \right)\]. 
C. \[y =  - 9\left( {x + 3} \right)\]. 
D. \[y - 16 =  - 9\left( {x + 3} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(y = {\left( {\frac{1}{{\sqrt 2 }}} \right)^2}\).

B. \(y = {\left( {\sqrt 2 } \right)^x}\). 
C. \(y = {\left( {\frac{1}{3}} \right)^x}\). 
D. \(y = {3^x}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP