Câu hỏi:

12/12/2025 9 Lưu

Cho hai hàm số \(f\left( x \right) = {\log _{0,5}}x\) và \(g\left( x \right) = {2^{ - x}}\). Các mệnh đề sau đúng hay sai?

a) Đồ thị hai hàm số đối xứng nhau qua đường thẳng \(y =  - x\).

Đúng
Sai

b) Tập xác định của hai hàm số trên là \(\mathbb{R}\).

Đúng
Sai

c) Đồ thị của hai hàm số cắt nhau tại đúng một điểm.

Đúng
Sai
d) Hai hàm số trên đều nghịch biến trên tập xác định của nó.
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Sai

b) Sai

c) Đúng

d) Đúng

Cho hai hàm số f(x) = log 0,5 của x và g (x) =2^- x. Các mệnh đề sau đúng hay sai? (ảnh 1)

Đồ thị hai hàm số như hình vẽ suy ra a sai, b sai, c đúng, d đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Do \(I\) là trung điểm của \[SC\] và \(O\) là trung điểm \(AC\) nên \(IO{\rm{//}}SA\). Do \[SA \bot \left( {ABCD} \right)\] nên \[IO \bot \left( {ABCD} \right)\], hay khoảng cách từ \(I\) đến mặt phẳng \(\left( {ABCD} \right)\) bằng độ dài đoạn thẳng \(IO\).

Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, SA vuông góc (ABCD). Gọi I là trung điểm của SC. Khoảng cách từ I đến mặt phẳng (ABCD) bằng độ dài đoạn thẳng nào? (ảnh 1)

Câu 2

A. \(y = {\left( {\frac{1}{{\sqrt 2 }}} \right)^2}\).

B. \(y = {\left( {\sqrt 2 } \right)^x}\). 
C. \(y = {\left( {\frac{1}{3}} \right)^x}\). 
D. \(y = {3^x}\).

Lời giải

Đồ thị hàm số ở hình vẽ là đồ thị của hàm số mũ có dạng \(y = {a^x}\). Loại đáp án A

Dựa vào đồ thị ta thấy hàm số nghịch biến trên \(\mathbb{R}\) nên \(0 < a < 1\). Loại đáp án B, D

Vậy đồ thị trong hình vẽ là đồ thị hàm số \(y = {\left( {\frac{1}{3}} \right)^x}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(CD \bot AB\).  

B. \(AC \bot BD\).  
C. \(BC \bot AD\). 
D. \(BC \bot CD\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP