Câu hỏi:

12/12/2025 44 Lưu

Cho hàm số \(f\left( x \right) = \left| {x + 1} \right|.\) Khẳng định nào sau đây là sai?

a) \(f\left( x \right)\)liên tục tại \(x =  - 1.\)

Đúng
Sai

b) \(f\left( x \right)\)có đạo hàm tại \(x =  - 1.\)

Đúng
Sai

c) \(f\left( { - 1} \right) = 0.\)

Đúng
Sai
d) \(f\left( x \right)\)đạt giá trị nhỏ nhất tại \(x =  - 1.\)
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng

b) Sai

c) Đúng

d) Đúng

\(f\left( x \right) = \left| {x + 1} \right| = \left\{ \begin{array}{l}\left( {x + 1} \right), & \\ - \left( {x + 1} \right),\end{array} \right.\)nếu \(\begin{array}{l}x \ge  - 1\\x <  - 1\end{array}\)

\(f\left( { - 1} \right) = 0 \Rightarrow \)Phương án C đúng.

\(f\left( x \right) \ge 0,\forall x. & f\left( x \right) = 0 \Leftrightarrow x =  - 1 \Rightarrow \) Phương án D đúng.

\[\mathop {\lim }\limits_{x \to  - {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to  - {1^ + }} \left( {x + 1} \right) = 0. &  & \mathop {\lim }\limits_{x \to  - {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to  - {1^ - }} \left( { - x - 1} \right) = 0. &  \Rightarrow \] Phương án A đúng.

\[\mathop {\lim }\limits_{x \to  - {1^ - }} \frac{{f\left( x \right) - f\left( { - 1} \right)}}{{x - \left( { - 1} \right)}} = \mathop {\lim }\limits_{x \to  - {1^ - }} \frac{{ - x - 1}}{{x + 1}} =  - 1, & \mathop {\lim }\limits_{x \to  - {1^ + }} \frac{{f\left( x \right) - f\left( { - 1} \right)}}{{x - \left( { - 1} \right)}} = \mathop {\lim }\limits_{x \to  - {1^ + }} \frac{{x + 1}}{{x + 1}} = 1.\]

Suy ra không tồn tại giới hạn của tỷ số \[\frac{{f\left( x \right) - f\left( { - 1} \right)}}{{x - \left( { - 1} \right)}}\] khi \[x \to  - 1.\]

Do đó hàm số đã cho không có đạo hàm tại \(x =  - 1.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: \((SC,(SAB)) \approx {12,1^0}\)

Lời giải

Cho hình chóp S.ABC có đáy là tam giác đều cạnh a,SB vuông góc (ABC) và SB = 4a. Tính góc giữa đường thẳng SC và mặt phẳng (SAB)? (ảnh 1)

Kẻ \(CI \bot AB \Rightarrow I\) là trung điểm \(AB\)

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{CI \bot AB}\\{CI \bot SB}\end{array} \Rightarrow CI \bot (SAB)} \right.\) tại \(I\) và \(SC\) cắt mp\((SAB)\) tại \(S\)

\( \Rightarrow SI\) là hình chiếu của \(SC\) trên mp \((SAB)\)

\( \Rightarrow (SC,(SAB)) = (SC,SI) = \widehat {CSI}\)

Ta có: \(IC = \frac{{a\sqrt 3 }}{2}\)

Ta có: \(SC = \sqrt {S{B^2} + B{C^2}}  = \sqrt {{{(4a)}^2} + {a^2}}  = \sqrt {17} a\)

Xét \(\Delta SCI\) vuông tại \(I\): \(\sin \widehat {CSI} = \frac{{CI}}{{SC}} = \frac{{\frac{{a\sqrt 3 }}{2}}}{{\sqrt {17} a}} = \frac{{\sqrt {51} }}{{34}} \Rightarrow \widehat {CSI} \approx {12,1^0}\)

Vậy \((SC,(SAB)) \approx {12,1^0}\).

Lời giải

Do \(I\) là trung điểm của \[SC\] và \(O\) là trung điểm \(AC\) nên \(IO{\rm{//}}SA\). Do \[SA \bot \left( {ABCD} \right)\] nên \[IO \bot \left( {ABCD} \right)\], hay khoảng cách từ \(I\) đến mặt phẳng \(\left( {ABCD} \right)\) bằng độ dài đoạn thẳng \(IO\).

Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, SA vuông góc (ABCD). Gọi I là trung điểm của SC. Khoảng cách từ I đến mặt phẳng (ABCD) bằng độ dài đoạn thẳng nào? (ảnh 1)

Câu 4

A. \(y = {\left( {\frac{1}{{\sqrt 2 }}} \right)^2}\).

B. \(y = {\left( {\sqrt 2 } \right)^x}\). 
C. \(y = {\left( {\frac{1}{3}} \right)^x}\). 
D. \(y = {3^x}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(y' = {17^{ - x}}\ln 17\). 

B. \(y' =  - x{.17^{ - x - 1}}\). 
C. \(y' =  - {17^{ - x}}\).     
D. \(y' =  - {17^{ - x}}\ln 17\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[y + 16 =  - 9\left( {x + 3} \right)\].  

B. \[y - 16 =  - 9\left( {x - 3} \right)\]. 
C. \[y =  - 9\left( {x + 3} \right)\]. 
D. \[y - 16 =  - 9\left( {x + 3} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP