Câu hỏi:

12/12/2025 26 Lưu

Cho hàm số \(f\left( x \right) = \left| {x + 1} \right|.\) Khẳng định nào sau đây là sai?

a) \(f\left( x \right)\)liên tục tại \(x =  - 1.\)

Đúng
Sai

b) \(f\left( x \right)\)có đạo hàm tại \(x =  - 1.\)

Đúng
Sai

c) \(f\left( { - 1} \right) = 0.\)

Đúng
Sai
d) \(f\left( x \right)\)đạt giá trị nhỏ nhất tại \(x =  - 1.\)
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng

b) Sai

c) Đúng

d) Đúng

\(f\left( x \right) = \left| {x + 1} \right| = \left\{ \begin{array}{l}\left( {x + 1} \right), & \\ - \left( {x + 1} \right),\end{array} \right.\)nếu \(\begin{array}{l}x \ge  - 1\\x <  - 1\end{array}\)

\(f\left( { - 1} \right) = 0 \Rightarrow \)Phương án C đúng.

\(f\left( x \right) \ge 0,\forall x. & f\left( x \right) = 0 \Leftrightarrow x =  - 1 \Rightarrow \) Phương án D đúng.

\[\mathop {\lim }\limits_{x \to  - {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to  - {1^ + }} \left( {x + 1} \right) = 0. &  & \mathop {\lim }\limits_{x \to  - {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to  - {1^ - }} \left( { - x - 1} \right) = 0. &  \Rightarrow \] Phương án A đúng.

\[\mathop {\lim }\limits_{x \to  - {1^ - }} \frac{{f\left( x \right) - f\left( { - 1} \right)}}{{x - \left( { - 1} \right)}} = \mathop {\lim }\limits_{x \to  - {1^ - }} \frac{{ - x - 1}}{{x + 1}} =  - 1, & \mathop {\lim }\limits_{x \to  - {1^ + }} \frac{{f\left( x \right) - f\left( { - 1} \right)}}{{x - \left( { - 1} \right)}} = \mathop {\lim }\limits_{x \to  - {1^ + }} \frac{{x + 1}}{{x + 1}} = 1.\]

Suy ra không tồn tại giới hạn của tỷ số \[\frac{{f\left( x \right) - f\left( { - 1} \right)}}{{x - \left( { - 1} \right)}}\] khi \[x \to  - 1.\]

Do đó hàm số đã cho không có đạo hàm tại \(x =  - 1.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: \(\frac{{36}}{{121}}\)

Lời giải

Ta có sơ đồ cây như sau:

Một chiếc túi chứa 5 quả bóng màu đỏ và 6 quả bóng màu xanh có cùng kích thước và khối lượng. Lần lượt lấy ngẫu nhiên một quả bóng rồi trả lại vào túi. Tính xác suất lấy được hai quả bóng màu xanh sau 2 lượt lấy (ảnh 1)

Trong đó: Đ là biến cố "Lấy được quả bóng màu đỏ”, X là biến cố "Lấy được quả bóng màu xanh".

Dựa vào sơ đồ cây, xác suất lấy 2 bóng xanh sau 2 lượt là \({\left( {\frac{6}{{11}}} \right)^2} = \frac{{36}}{{121}}\).

Lời giải

Do \(I\) là trung điểm của \[SC\] và \(O\) là trung điểm \(AC\) nên \(IO{\rm{//}}SA\). Do \[SA \bot \left( {ABCD} \right)\] nên \[IO \bot \left( {ABCD} \right)\], hay khoảng cách từ \(I\) đến mặt phẳng \(\left( {ABCD} \right)\) bằng độ dài đoạn thẳng \(IO\).

Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, SA vuông góc (ABCD). Gọi I là trung điểm của SC. Khoảng cách từ I đến mặt phẳng (ABCD) bằng độ dài đoạn thẳng nào? (ảnh 1)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(y' = {17^{ - x}}\ln 17\). 

B. \(y' =  - x{.17^{ - x - 1}}\). 
C. \(y' =  - {17^{ - x}}\).     
D. \(y' =  - {17^{ - x}}\ln 17\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[y + 16 =  - 9\left( {x + 3} \right)\].  

B. \[y - 16 =  - 9\left( {x - 3} \right)\]. 
C. \[y =  - 9\left( {x + 3} \right)\]. 
D. \[y - 16 =  - 9\left( {x + 3} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(y = {\left( {\frac{1}{{\sqrt 2 }}} \right)^2}\).

B. \(y = {\left( {\sqrt 2 } \right)^x}\). 
C. \(y = {\left( {\frac{1}{3}} \right)^x}\). 
D. \(y = {3^x}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP