Có bao nhiêu giá trị nguyên thuộc khoảng \(\left( { - 30;\,30} \right)\) của tham số \(m\) để mọi tiếp tuyến của đồ thị hàm số \(y = {x^3} - m{x^2} + \left( {2m - 3} \right)x - 1\) đều có hệ số góc dương?
Có bao nhiêu giá trị nguyên thuộc khoảng \(\left( { - 30;\,30} \right)\) của tham số \(m\) để mọi tiếp tuyến của đồ thị hàm số \(y = {x^3} - m{x^2} + \left( {2m - 3} \right)x - 1\) đều có hệ số góc dương?
Quảng cáo
Trả lời:
Trả lời: không có giá trị của tham số \(m\)
Lời giải
w \(y = {x^3} - m{x^2} + \left( {2m - 3} \right)x - 1 \Rightarrow y' = 3{x^2} - 2mx + 2m - 3\).
w Mọi tiếp tuyến của đồ thị hàm số \(y = {x^3} - m{x^2} + \left( {2m - 3} \right)x - 1\) đều có hệ số góc dương \( \Leftrightarrow y' = 3{x^2} - 2mx + 2m - 3 > 0\,,\,\forall x \in \mathbb{R} \Leftrightarrow \Delta ' = {m^2} - 3\left( {2m - 3} \right) < 0 \Leftrightarrow {m^2} - 6m + 9 < 0\,(VN)\).
w Vậy không có giá trị của tham số \(m\) thỏa mãn yêu cầu bài toán.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trả lời: \((SC,(SAB)) \approx {12,1^0}\)
Lời giải
Kẻ \(CI \bot AB \Rightarrow I\) là trung điểm \(AB\)
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{CI \bot AB}\\{CI \bot SB}\end{array} \Rightarrow CI \bot (SAB)} \right.\) tại \(I\) và \(SC\) cắt mp\((SAB)\) tại \(S\)
\( \Rightarrow SI\) là hình chiếu của \(SC\) trên mp \((SAB)\)
\( \Rightarrow (SC,(SAB)) = (SC,SI) = \widehat {CSI}\)
Ta có: \(IC = \frac{{a\sqrt 3 }}{2}\)
Ta có: \(SC = \sqrt {S{B^2} + B{C^2}} = \sqrt {{{(4a)}^2} + {a^2}} = \sqrt {17} a\)
Xét \(\Delta SCI\) vuông tại \(I\): \(\sin \widehat {CSI} = \frac{{CI}}{{SC}} = \frac{{\frac{{a\sqrt 3 }}{2}}}{{\sqrt {17} a}} = \frac{{\sqrt {51} }}{{34}} \Rightarrow \widehat {CSI} \approx {12,1^0}\)
Vậy \((SC,(SAB)) \approx {12,1^0}\).
Lời giải
Do \(I\) là trung điểm của \[SC\] và \(O\) là trung điểm \(AC\) nên \(IO{\rm{//}}SA\). Do \[SA \bot \left( {ABCD} \right)\] nên \[IO \bot \left( {ABCD} \right)\], hay khoảng cách từ \(I\) đến mặt phẳng \(\left( {ABCD} \right)\) bằng độ dài đoạn thẳng \(IO\).

Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \(y = {\left( {\frac{1}{{\sqrt 2 }}} \right)^2}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(y' = {17^{ - x}}\ln 17\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \[y + 16 = - 9\left( {x + 3} \right)\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
