Hàm số nào sau đây đồng biến trên \(\mathbb{R}\)?
A.\(y = {\left( {\frac{{\rm{e}}}{\pi }} \right)^x}\).
B. \(y = {\left( {\frac{2}{{\rm{e}}}} \right)^x}\).
C. \(y = {\left( {\sqrt 2 } \right)^x}\).
D. \(y = {\left( {0,5} \right)^x}\).
Quảng cáo
Trả lời:
Hàm số \(y = {a^x}\) đồng biến khi \(a > 1\) và nghịch biến khi \(0 < a < 1\).
Suy ra hàm số \(y = {\left( {\sqrt 2 } \right)^x}\) đồng biến trên \(\mathbb{R}\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trả lời: \(\frac{{25}}{{39}}\)
Lời giải
Ta có sơ đồ cây như sau:
Trong đó: \(X\) là biến cố "Lấy được 1 viên bi màu xanh", Đ là biến cố "Lấy được 1 viên bi màu đỏ".
Xác suất lấy được ít nhất một viên bi đỏ: \(\frac{{25}}{{39}}\).
Lời giải
Trả lời: \(d(AC,SB) = \frac{{3\sqrt {19} }}{{19}}a\)
Lời giải
Dựng \(Bx//AC \Rightarrow AC//(SBx)\)
Suy ra \(d(AC,SB) = d(AC,(SBx)) = d(A,(SBx))\)
Dựng và chứng minh được \(d(A,(SBx)) = AK\)
Ta có: \(\Delta AHB\) vuông cân tại \(H\) nên \(AH = \frac{{AB}}{{\sqrt 2 }} = \frac{a}{{\sqrt 2 }}\)
Ta có:
\(AK = \frac{1}{{\sqrt {\frac{1}{{S{A^2}}} + \frac{1}{{A{H^2}}}} }} = \frac{1}{{\sqrt {\frac{1}{{{{(3a)}^2}}} + \frac{1}{{{{\left( {\frac{a}{{\sqrt 2 }}} \right)}^2}}}} }} = \frac{{3\sqrt {19} }}{{19}}a\)
Vậy \(d(AC,SB) = \frac{{3\sqrt {19} }}{{19}}a\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
a) Phương trình có nghiệm dương nếu \[m > 0\].
b) Phương trình luôn có nghiệm với mọi \[m\].
c) Phương trình luôn có nghiệm duy nhất \[x = {\log _3}\left( {m + 1} \right)\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \(\left( {SBC} \right) \bot \left( {SAB} \right)\).
B. \(\left( {SAB} \right) \bot \left( {ABCD} \right)\).
C. \(\left( {SAC} \right) \bot \left( {ABCD} \right)\).
D. \(\left( {SAC} \right) \bot \left( {SAD} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \(2x - y = 0\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.