Câu hỏi:

16/12/2025 11 Lưu

Cho hình chóp \(S.ABCD\) có \(ABCD\) là hình vuông tâm \(O\) cạnh \(a\). Tính khoảng cách giữa \(SC\) và \(AB\) biết rằng \(SO = a\) và vuông góc với mặt đáy của hình chóp.

A. \(a\). 

B. \(\frac{{a\sqrt 5 }}{5}\).                    
C. \(\frac{{2a}}{5}\). 
D. \(\frac{{2a}}{{\sqrt 5 }}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho hình chóp S.ABCD có ABCD là hình vuông tâm O cạnh a. Tính khoảng cách giữa SC và AB biết rằng SO = a và vuông góc với mặt đáy của hình chóp. (ảnh 1)

Từ giả thiết suy ra hình chóp \(S.ABCD\)là hình chóp tứ giác đều.

Ta có \(AB{\rm{//}}CD\)\( \Rightarrow AB{\rm{//}}\left( {SCD} \right)\) nên \(d\left( {SC;AB} \right)\)\( = d\left( {AB;{\mathop{\rm mp}\nolimits} \left( {SCD} \right)} \right)\)\( = d\left( {A;{\mathop{\rm mp}\nolimits} \left( {SCD} \right)} \right)\).

Mặt khác \(O\) là trung điểm \(AC\) nên \(d\left( {A;{\mathop{\rm mp}\nolimits} \left( {SCD} \right)} \right)\)\( = 2d\left( {O;{\mathop{\rm mp}\nolimits} \left( {SCD} \right)} \right)\).

Như vậy \(d\left( {SC;AB} \right)\)\( = 2d\left( {O;{\mathop{\rm mp}\nolimits} \left( {SCD} \right)} \right)\).

Gọi \(M\) là trung điểm \(CD\), ta có \(OM \bot CD\) và \(OM = \frac{a}{2}\). Kẻ \(OH \bot SM\), với \(H \in SM\), thì \(OH \bot {\mathop{\rm mp}\nolimits} \left( {SCD} \right)\).

Xét tam giác \(SOM\) vuông tại \[O\], ta có \(\frac{1}{{O{H^2}}} = \frac{1}{{S{O^2}}} + \frac{1}{{O{M^2}}}\)\( = \frac{1}{{{a^2}}} + \frac{1}{{{{\left( {\frac{a}{2}} \right)}^2}}} = \frac{5}{{{a^2}}}\).

Từ đó \(OH = \frac{a}{{\sqrt 5 }}\).

Vậy \(d\left( {SC;AB} \right)\)\( = 2d\left( {O;{\mathop{\rm mp}\nolimits} \left( {SCD} \right)} \right)\)\( = 2.OH\)\( = \frac{{2a}}{{\sqrt 5 }}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: \(\frac{8}{{27}}\)

Lời giải

Xác suất chỉ xuất hiện mặt sấp là: \({\left( {\frac{2}{3}} \right)^3} = \frac{8}{{27}}\).

Lời giải

Trả lời: \( \approx {11,5^0}\)

Lời giải

Cho hình chóp S.ABC có đáy là tam giác đều cạnh a,SA vuông góc (ABC) và SB = a căn bậc hai của  5. Gọi M là trung điểm BC. Tính góc giữa đường thẳng SM và mặt phẳng (SAC)? (ảnh 1)

Kẻ \(MH \bot AC\)

Ta có: \(MH \bot SA \Rightarrow MH \bot (SAC)\) tại \(H\) và \(SM\) cắt mp \((SAC)\) tại \(S\)

\( \Rightarrow SH\) là hình chiếu của \(SM\) trên mp \((SAC)\)

\( \Rightarrow (SM,(SAC)) = (SM,SH) = \widehat {MSH}\)

Ta có: \(HM = MC \cdot \sin {60^^\circ } = \frac{a}{2} \cdot \sin {60^^\circ } = \frac{{a\sqrt 3 }}{4}\);

\(HC = MC \cdot \cos {60^^\circ } = \frac{a}{4} \Rightarrow AH = AC - HC = a - \frac{a}{4} = \frac{{3a}}{4}\)

Ta có: \(SH = \sqrt {S{A^2} + A{H^2}}  = \sqrt {{{(a\sqrt 5 )}^2} - {a^2} + {{\left( {\frac{{3a}}{4}} \right)}^2}}  = \frac{{\sqrt {73} }}{4}a\)

Xét \(\Delta SHM\) vuông tại \(H:\tan \widehat {MSH} = \frac{{HM}}{{SH}} = \frac{{\frac{{a\sqrt 3 }}{4}}}{{\frac{{\sqrt {73} a}}{4}}} = \frac{{\sqrt {219} }}{{73}} \Rightarrow \widehat {MSH} \approx {11,5^0}\)

Câu 3

a) Phương trình có nghiệm dương nếu \[m > 0\].

Đúng
Sai

b) Phương trình luôn có nghiệm với mọi \[m\].   

Đúng
Sai

c) Phương trình luôn có nghiệm duy nhất \[x = {\log _3}\left( {m + 1} \right)\].      

Đúng
Sai
d) Phương trình có nghiệm với \[m \ge  - 1\].
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\left( {SBC} \right) \bot \left( {SAB} \right)\).                                

B. \(\left( {SAB} \right) \bot \left( {ABCD} \right)\). 

C. \(\left( {SAC} \right) \bot \left( {ABCD} \right)\). 

D. \(\left( {SAC} \right) \bot \left( {SAD} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP