Một hộp có 5 viên bi màu đen, 4 viên bi màu trắng. Chọn ngẫu nhiên 2 viên bi từ chiếc hộp đó. Tìm xác suất để chọn được 2 viên bi cùng màu.
Quảng cáo
Trả lời:
Chọn B.
Gọi \(A\) là biến cố: "Lấy được 2 viên bi màu trắng", suy ra \(P(A) = \frac{{C_4^2}}{{C_9^2}} = \frac{1}{6}\).
Gọi \(B\) là biến cố: "Lấy được 2 viên bi màu đen", suy ra \(P(B) = \frac{{C_5^2}}{{C_9^2}} = \frac{5}{{18}}\).
Gọi \(C\) là biến cố: "Lấy được 2 viên bi cùng màu".
Ta có \(C = A \cup B\) và \(A,B\) là hai biến cố xung khắc.
Vì vậy: \(P(C) = P(A) + P(B) = \frac{4}{9}\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trả lời: \(\frac{{25}}{{39}}\)
Lời giải
Ta có sơ đồ cây như sau:
Trong đó: \(X\) là biến cố "Lấy được 1 viên bi màu xanh", Đ là biến cố "Lấy được 1 viên bi màu đỏ".
Xác suất lấy được ít nhất một viên bi đỏ: \(\frac{{25}}{{39}}\).
Lời giải
Trả lời: \(d(AC,SB) = \frac{{3\sqrt {19} }}{{19}}a\)
Lời giải
Dựng \(Bx//AC \Rightarrow AC//(SBx)\)
Suy ra \(d(AC,SB) = d(AC,(SBx)) = d(A,(SBx))\)
Dựng và chứng minh được \(d(A,(SBx)) = AK\)
Ta có: \(\Delta AHB\) vuông cân tại \(H\) nên \(AH = \frac{{AB}}{{\sqrt 2 }} = \frac{a}{{\sqrt 2 }}\)
Ta có:
\(AK = \frac{1}{{\sqrt {\frac{1}{{S{A^2}}} + \frac{1}{{A{H^2}}}} }} = \frac{1}{{\sqrt {\frac{1}{{{{(3a)}^2}}} + \frac{1}{{{{\left( {\frac{a}{{\sqrt 2 }}} \right)}^2}}}} }} = \frac{{3\sqrt {19} }}{{19}}a\)
Vậy \(d(AC,SB) = \frac{{3\sqrt {19} }}{{19}}a\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
a) Phương trình có nghiệm dương nếu \[m > 0\].
b) Phương trình luôn có nghiệm với mọi \[m\].
c) Phương trình luôn có nghiệm duy nhất \[x = {\log _3}\left( {m + 1} \right)\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \(\left( {SBC} \right) \bot \left( {SAB} \right)\).
B. \(\left( {SAB} \right) \bot \left( {ABCD} \right)\).
C. \(\left( {SAC} \right) \bot \left( {ABCD} \right)\).
D. \(\left( {SAC} \right) \bot \left( {SAD} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \(2x - y = 0\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.